【网络协议】TCP

news2024/11/25 21:21:40

TCP协议全称为传输控制协议(Transmission Control Protocol).要理解TCP就要从他的特性开始说,这些特性各自之间或多或少各有联结,需要以宏观视角来看待。

目录:

1.TCP报文格式

因为报文解释过于繁琐,具体内容请看这篇文章TCP报文格式

2.确认应答(ACK)机制

TCP将每个字节的数据都进行了编号,即为序列号。

每一个ACK都带有对应的确认序列号, 意思是告诉发送者, 我已经收到了哪些数据; 下一次你从哪里开始发. 

例1:主机A发送初始SEQ为666的SYN报文,主机B接收到后发送SYN+ACK且初始SEQ为888的报文,由于两个报文并不携带有效载荷,所以报文长度应该为0。但是这里是个特殊情况,为了给对方保证自己确实收到了这个SYN报文,所以主机A和主机B下次发送的报文中的32位确认序号应该为在对方上次发送到的SEQ+1。

例2:主机A发送SEQ为666有效载荷为200字节的报文,主机B接收到后发送SEQ为888有效载荷为100字节的确认报文(确认报文可以携带自己的有效载荷)。所以主机A在收到主机B发来的确认报文(ACK置为1,SEQ为888)后,会发送确认报文,报文中ACK置为1,32位确认序号为989(因为确认序号=对方SEQ+有效载荷长度+1),意为期待下次对方发来的数据应该为989为序列号。所以想想,主机B发送的SEQ为888有效载荷为100字节的确认报文中32位确认序号为多少呢?根据上面的理论,那么就应该是666+200+1=867,意为主机A再次发送报文32位序列号应该为867。

初始序列号一定都是从0开始的吗?想象这么一个问题,主机A与主机B成功建立TCP连接。如果主机A发送SEQ为1的报文后,报文在网络中迟迟无法送达主机B。然而主机A恰好重新启动了,这时候主机B也就会释放这条连接。但是在A主机重新启动后,又以相同的源ip,源端口号,目的ip,目的端口号重新建立连接,这时候发送的报文SEQ也为1且恰好断开连接前的SEQ为1的报文也送达了,由于五元组相同,序列号都相等,这时候就会造成数据混乱的问题(会丢弃一个,我都收到了你发的序号为1的报文了,你怎么还发,你干嘛,哎呦)。

所以初始序列号会根据某种生成算法随机生成。自然32位确认序号也由对方的初始序列号+报文长度决定。

3.超时重传机制

如果如下图所示情况,报文压根没有发送过去,那么重传毫无问题。

主机A发送数据给B之后, 可能因为网络拥堵等原因, 数据无法到达主机B;
如果主机A在一个特定时间间隔内没有收到B发来的确认应答, 就会进行重发;

如果报文成功发送了,但是对方主机发来的ACK报文丢失了呢?

因此主机B会收到很多重复数据. 那么TCP协议需要能够识别出那些包是重复的包, 并且把重复的丢弃掉.
这时候我们可以利用前面提到的序列号, 就可以很容易做到去重的效果.
那么, 如果超时的时间如何确定?
最理想的情况下, 找到一个最小的时间, 保证 "确认应答一定能在这个时间内返回".
但是这个时间的长短, 随着网络环境的不同, 是有差异的.
如果超时时间设的太长, 会影响整体的重传效率;
如果超时时间设的太短, 有可能会频繁发送重复的包;

TCP为了保证无论在任何环境下都能比较高性能的通信, 因此会动态计算这个最大超时时间. 

Linux(BSD UnixWindows也是如此), 超时以500ms为一个单位进行控制, 每次判定超时重发的超时 时间都是500ms的整数倍.
如果重发一次之后, 仍然得不到应答, 等待 2*500ms 后再进行重传.
如果仍然得不到应答, 等待 4*500ms 进行重传. 依次类推, 以指数形式递增.
累计到一定的重传次数, TCP认为网络或者对端主机出现异常, 强制关闭连接

4.连接管理机制

 注意:实际上在客户端connect后TCP连接就已经建立了,服务器accept只是把建立好的连接拿到应用层开始通信。

这里则涉及到TCP三次握手四次挥手,如需要请看这篇文章三次握手四次挥手

5.滑动窗口

实际上就是发送缓冲区的一段区域。

报文是发一条等到对方发送ACK后才继续发送吗,换句话说报文只能一条一条的发吗?

并不是这样效率太过低下,真实情况往往是发送方一次发送多个报文,然后接收方接收后返回ACK报文。

滑动窗口大小指的是无需等待确认应答而可以继续发送数据的最大值. 上图的窗口大小就是4000个字节(四个
).
发送前四个段的时候, 不需要等待任何ACK, 直接发送; 
收到第一个ACK, 滑动窗口向后移动, 继续发送第五个段的数据; 依次类推;
操作系统内核为了维护这个滑动窗口, 需要开辟发送缓冲区来记录当前还有哪些数据没有应答; 只有确 认应答过的数据, 才能从缓冲区删掉;
窗口越大, 则网络的吞吐率就越高;

这里如果丢包了怎么办?

情况一:ACK丢了 

如果发送方接收到后续的ACK报文,则代表前面的报文 已经被对方接收了。

情况2:包丢了

当某一段报文段丢失之后, 发送端会一直收到 1001 这样的ACK, 就像是在提醒发送端 "我想要的是 1001" 一样;
如果发送端主机连续三次收到了同样一个 "1001" 这样的应答, 就会将对应的数据 1001 - 2000 重新发送;
这个时候接收端收到了 1001 之后, 再次返回的ACK就是7001(因为2001 - 7000)接收端其实之前就已 经收到了, 被放到了接收端操作系统内核的接收缓冲区;等到1001被接收到以后才能按顺序向应用层交付。

这种机制被称为 "高速重发控制"(也叫 "快重传").

滑动窗口大小=min(对方16位窗口大小,拥塞窗口大小);看完下面的流量控制和拥塞控制你会明白

6.流量控制

接收端处理数据的速度是有限的 . 如果发送端发的太快 , 导致接收端的缓冲区被打满 , 这个时候如果发送端继续发送 ,就会造成丢包, 继而引起丢包重传等等一系列连锁反应 .
因此 TCP 支持根据接收端的处理能力 , 来决定发送端的发送速度 . 这个机制就叫做 流量控制 (Flow Control) ;
接收端将自己可以接收的缓冲区大小放入 TCP 首部中的 "16位 窗口大小 " 字段 , 通过 ACK 通知发送端 ;
窗口大小字段越大 , 说明网络的吞吐量越高 ;
接收端一旦发现自己的缓冲区快满了 , 就会将窗口大小设置成一个更小的值通知给发送端 ;
发送端接受到这个窗口之后 , 就会减慢自己的发送速度 ;
如果接收端缓冲区满了 , 就会将窗口置为 0; 这时发送方不再发送数据 , 但是需要定期发送一个窗口探测数据段, 使接收端把窗口大小告诉发送端 .

7.拥塞控制

当少数报文丢失,会启用超时重传或者快重传。但如果大量报文丢失呢?如果大量报文丢失,那么就认为发生了网络拥塞。

在网络拥堵的时候选择继续发送数据无疑会继续加大拥堵,所以TCP引入慢启动机制, 先发少量的数据, 探探路, 摸清当前的网络拥堵状态, 再决定按照多大的速度传输数据;

此处引入一个概念程为 拥塞窗口
发送开始的时候 , 定义拥塞窗口大小为 1;
每次收到一个 ACK 应答 , 拥塞窗口加 1;
每次发送数据包的时候 , 将拥塞窗口和接收端主机反馈的窗口大小做比较 , 取较小的值作为实际发送的窗口(滑动窗口);
像上面这样的拥塞窗口增长速度 , 是指数级别的 . " 慢启动 " 只是指初始时慢 , 但是增长速度非常快 .
为了不增长的那么快, 因此不能使拥塞窗口单纯的加倍.此处引入一个叫做慢启动的阈值,当拥塞窗口超过这个阈值的时候, 不再按照指数方式增长, 而是按照线性方式增长

TCP 开始启动的时候 , 慢启动阈值等于滑动窗口最大值 ;
在每次超时重发的时候 , 慢启动阈值会变成原来的一半 , 同时拥塞窗口置回 1;
少量的丢包 , 我们仅仅是触发超时重传 ; 大量的丢包 , 我们就认为网络拥塞 ;
TCP 通信开始后 , 网络吞吐量会逐渐上升 ; 随着网络发生拥堵 , 吞吐量会立刻下降 ;
拥塞控制 , 归根结底是 TCP 协议想尽可能快的把数据传输给对方 , 但是又要避免给网络造成太大压力的折中方案 .

慢启动阈值是一个界限,为了保证数据在尽可能不加剧拥堵的前提下,尽快把数据发送出去,拥塞窗口大小在未达到慢启动阈值前以指数形式增长,到达慢启动阈值后就会以线性方式增长。

注意:窗口大小是对方告知我的,而拥塞窗口是自己获知的。

8.延迟应答

如果接收数据的主机立刻返回 ACK 应答 , 这时候返回的窗口可能比较小 .
假设接收端缓冲区为 1M. 一次收到了 500K 的数据 ; 如果立刻应答 , 返回的窗口就是 500K;
但实际上可能处理端处理的速度很快 , 10ms 之内就把 500K 数据从缓冲区消费掉了 ;
在这种情况下 , 接收端处理还远没有达到自己的极限 , 即使窗口再放大一些 , 也能处理过来 ;
如果接收端稍微等一会再应答 , 比如等待 200ms 再应答 , 那么这个时候返回的窗口大小就是 1M;
一定要记得, 窗口越大, 网络吞吐量就越大, 传输效率就越高. 我们的目标是在保证网络不拥塞的情况下尽量提高传输效率;
那么所有的包都可以延迟应答么 ? 肯定也不是 ;
数量限制: 每隔N个包就应答一次;
时间限制: 超过最大延迟时间就应答一次;
具体的数量和超时时间 , 依操作系统不同也有差异 ; 一般 N 2, 超时时间取 200ms

9.捎带应答

发送ACK报文顺带发送数据。

10.面向字节流

创建一个 TCP socket, 同时在内核中创建一个 发送缓冲区 和一个 接收缓冲区 ;
调用 write , 数据会先写入发送缓冲区中 ;
如果发送的字节数太长 , 会被拆分成多个 TCP 的数据包发出 ;
如果发送的字节数太短 , 就会先在缓冲区里等待 , 等到缓冲区长度差不多了 , 或者其他合适的时机发送出去;
接收数据的时候 , 数据也是从网卡驱动程序到达内核的接收缓冲区 ;
然后应用程序可以调用 read 从接收缓冲区拿数据 ;
另一方面 , TCP 的一个连接 , 既有发送缓冲区 , 也有接收缓冲区 , 那么对于这一个连接 , 既可以读数据 , 也可以写数据. 这个概念叫做 全双工。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1049518.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

架构案例2022(四十二)

促销管理系统 某电子商务公司拟升级其会员与促销管理系统,向用户提供个性化服务,提高用户的粘性。在项目立项之初,公司领导层一致认为本次升级的主要目标是提升会员管理方式的灵活性,由于当前用户规模不大,业务也相对…

PDF文件超出上传大小?三分钟学会PDF压缩

PDF作为一种流行的文档格式,被广泛用于各种场合,然而有时候PDF文件的大小超出了上传限制,这时候我们就需要采取一些措施来减小PDF文件的大小,下面就给大家分享几个方法,一起来学习下吧~ 方法一:嗨格式压缩大…

windows WSL配置cuda,pytorch和jupyter notebook

机器配置 GPU: NVIDIA Quadro K2000 与 NVIDIA 驱动程序捆绑的CUDA版本 但按照维基百科的描述,我的GPU对应的compute capability3.0,允许安装的CUDA最高只支持10.2,如下所示。 为什么本地会显示11.4呢?对此,GPT是这…

R语言分析:如何轻松地把数据分为三、四、五等份?

有网友问了,我如何对连续型资料进行分组,常见的有按照中位数分组、四分位数分组,甚至分为5组。 这个问题其实很简单的了。 用两个函数,一个是quantile函数,另外一个是cut函数 1. quantile()函数的应用 该函数目的是获得…

白盒 SDK 加密 —— Go 语言中直调 C 动态库实现

文章目录 1.背景2.实现方式2.1.C 库 .so 文件生成2.2.C 库 .h 文件2.3.Goland 调用实现2.3.1 整体2.3.2 注释块部分2.3.3 逻辑实现部分 3.小结 1.背景 在重构的历史项目中,有一点是语言转换:从 PHP 转至 Goland ,在压缩资源的同时&#xff0…

SpringMVC+统一表现层返回值+异常处理器

一、统一表现层返回值 根据我们不同的处理方法,返回的数据格式都会不同,例如添加只返回true|false,删除同理,而查询却返回数据。 Result类 为此我们封装一个result类来用于表现层的返回。 public class Result {//描述统一格式…

B. Sets and Union

题目: 样例: 输入 4 3 3 1 2 3 2 4 5 2 3 4 4 4 1 2 3 4 3 2 5 6 3 3 5 6 3 4 5 6 5 1 1 3 3 6 10 1 9 2 1 3 3 5 8 9 1 2 4 28输出 4 5 6 0 思路: 这里题目的意思是,要求合并尽可能多的集合,使它的集合大小最大&…

flink中不同序列化器性能对比

背景 flink有多种序列化方式,包括flink内置的以及fallback到kryo的,那么他们之间有多大的性能差距呢,本文就从https://flink.apache.org/2020/04/15/flink-serialization-tuning-vol.-1-choosing-your-serializer-if-you-can/这篇文章里摘录…

分类预测 | MATLAB实现PSO-CNN粒子群算法优化卷积神经网络数据分类预测

分类预测 | MATLAB实现PSO-CNN粒子群算法优化卷积神经网络数据分类预测 目录 分类预测 | MATLAB实现PSO-CNN粒子群算法优化卷积神经网络数据分类预测分类效果基本描述程序设计参考资料 分类效果 基本描述 1.Matlab实现PSO-CNN多特征分类预测,多特征输入模型&#xf…

【计算机视觉|人脸建模】PanoHead:360度几何感知的3D全头合成

本系列博文为深度学习/计算机视觉论文笔记,转载请注明出处 标题:PanoHead: Geometry-Aware 3D Full-Head Synthesis in 360 ∘ ^{\circ} ∘ 链接:[2303.13071] PanoHead: Geometry-Aware 3D Full-Head Synthesis in 360 ∘ ^{\circ} ∘ (arx…

JavaScript 函数柯里化

🎶什么是柯里化 柯里化(Currying)是把接受多个参数的函数变换成接受一个单一参数(最初函数的第一个参数)的函数,并且返回接受余下的参数且返回结果的新函数的技术。 🎡简单的函数柯里化的实现 // ------------- 原函数…

Mac电脑强大的字体管理 RightFont for Mac

RightFont for Mac软件特色 速度有多快?RightFont可以在0.9秒以内加载30,000个字体! 自动从Google字体/ Adobe Typekit集合(通过Adobe Creative Cloud客户端)同步字体。 轻松切换组视图以折叠/展开字体系列。 通过简单的拖放导入…

怎么保护苹果手机移动应用程序ipa中文件安全?

目录 前言 1. 对敏感文件进行文件名称混淆 2. 更改文件的MD5值 3. 增加不可见水印处理 3. 对html,js,css等资源进行压缩 5. 删除可执行文件中的调试信息 前言 ios应用程序存储一些图片,资源,配置信息,甚至敏感数…

raw图片处理软件:DxO PhotoLab 6 mac中文版支持相机格式

DxO PhotoLab 6 mac是一款专业的RAW图片处理软件,适用于Mac操作系统。它具有先进的图像处理技术和直观易用的界面,可帮助用户轻松地将RAW格式的照片转换为高质量的JPEG或TIFF图像。 DxO PhotoLab 6支持多种相机品牌的RAW格式,包括佳能、尼康、…

多叉树+图实现简单业务流程

文章目录 场景整体架构流程业务界面技术细节小结 场景 这次遇到一个需求,大致就是任务组织成方案,方案组织成预案,预案可裁剪调整.预案关联事件等级配置,告警触发预案产生事件.然后任务执行是有先后的,也就是有流程概念. 整体架构流程 方案管理、预案管理构成任务流程的基础条…

Redis学习第九天

今天是Jedis!作者的Redis在游戏本上,但是Java的IDEA总是下载不了,所以只能作为概念听一听了,目前无法做到实操。 Jedis概念 Jedis实操 首先要保证redis的服务器开启,然后引入jedis依赖,最后通过服务器的I…

【学习笔记】深度学习分布式系统

深度学习分布式系统 前言1. 数据并行:参数服务器2. 流水线并行:GPipe3. 张量并行:Megatron LM4. 切片并行:ZeRO5. 异步分布式:PATHWAYS总结参考链接 前言 最近跟着李沐老师的视频学习了深度学习分布式系统的发展。这里…

作用域 CSS 回来了

几年前,消失的作用域 CSS,如今它回来了,而且比以前的版本要好得多。 更好的是,W3C规范基本稳定,现在Chrome中已经有一个工作原型。我们只需要社区稍微关注一下,引诱其他浏览器构建它们的实现,并…

嵌入式数据库sqlite3基本命令操作基础(05)

前言 数据在实际工作中应用非常广泛,数据库的产品也比较多,oracle、DB2、SQL2000、mySQL;基于嵌入式linux的数据库主要有SQLite, Firebird, Berkeley DB, eXtremeDB。 本文主要讲解数据库SQLite,通过这个开源的小型的嵌入式数据…

MySQL5.7高级函数:JSON_ARRAYAGG和JSON_OBJECT的使用

前置准备 DROP TABLE IF EXISTS t_user; CREATE TABLE t_user (id bigint(20) NOT NULL,name varchar(50) CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci …