【Linux】Linux进程控制

news2025/1/16 15:49:54

在这里插入图片描述

​📝个人主页:@Sherry的成长之路
🏠学习社区:Sherry的成长之路(个人社区)
📖专栏链接:Linux
🎯长路漫漫浩浩,万事皆有期待

上一篇博客:【Linux】Linux进程概念

文章目录

  • 一、进程创建
    • fork函数初识
    • fork函数返回值
    • 写时拷贝
    • fork常规用法
    • fork调用失败的原因
  • 二、进程终止
    • 进程退出场景
    • 进程退出码
    • 进程正常退出
      • return退出
      • exit函数
      • _exit函数
      • return、exit和_exit之间的区别与联系
    • 进程异常退出
  • 三、进程等待
    • 进程等待的必要性
    • 获取子进程status
    • 进程等待的方法
      • wait方法
      • waitpid方法
    • 多进程创建以及等待的代码模型
    • 基于非阻塞接口的轮询检测方案
  • 四、进程程序替换
    • 替换原理
    • 替换函数
    • 函数解释
    • 命名理解
  • 做一个简易的shell
  • 总结:

一、进程创建

fork函数初识

在Linux中,fork函数是非常重要的函数,它从已存在进程中创建一个新进程。新进程为子进程,而原进程为父进程。

返回值:
在子进程中返回0,父进程中返回子进程的PID,子进程创建失败返回-1。

进程调用fork,当控制转移到内核中的fork代码后,内核做:

分配新的内存块和内核数据结构给子进程。
将父进程部分数据结构内容拷贝至子进程。
添加子进程到系统进程列表当中。
fork返回,开始调度器调度。
fork之后,父子进程代码共享。

例如:

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types. h>
int main()
{
	printf ("Before:PID is %d\n" , getpid( ));
	pid_t id = fork();
	if(id = -1)
	{
		printf ( "fork error! \n" );
		exit(1);
	}
	printf( "After:PID is %d, return is %d\n" , getpid(), id);
	sleep( 1);
	return 0;
}

运行结果如下:

在这里插入图片描述

这里可以看到,Before只输出了一次,而After输出了两次。其中,Before是由父进程打印的,而调用fork函数之后打印的两个After,则分别由父进程和子进程两个进程执行。也就是说,fork之前父进程独立执行,而fork之后父子两个执行流分别执行。

注意: fork之后,父进程和子进程谁先执行完全由调度器决定。

fork函数返回值

fork函数为什么要给子进程返回0,给父进程返回子进程的PID?

一个父进程可以创建多个子进程,而一个子进程只能有一个父进程。因此,对于子进程来说,父进程是不需要被标识的;而对于父进程来说,子进程是需要被标识的,因为父进程创建子进程的目的是让其执行任务的,父进程只有知道了子进程的PID才能很好的对该子进程指派任务。

为什么fork函数有两个返回值?

父进程调用fork函数后,为了创建子进程,fork函数内部将会进行一系列操作,包括创建子进程的进程控制块、创建子进程的进程地址空间、创建子进程对应的页表等等。子进程创建完毕后,操作系统还需要将子进程的进程控制块添加到系统进程列表当中,此时子进程便创建完毕了。

也就是说,在fork函数内部执行return语句之前,子进程就已经创建完毕了,那么之后的return语句不仅父进程需要执行,子进程也同样需要执行,这就是fork函数有两个返回值的原因。

写时拷贝

当子进程刚刚被创建时,子进程和父进程的数据和代码是共享的,即父子进程的代码和数据通过页表映射到物理内存的同一块空间。只有当父进程或子进程需要修改数据时,才将父进程的数据在内存当中拷贝一份,然后再进行修改。

这种在需要进行数据修改时再进行拷贝的技术,称为写时拷贝技术。

1、为什么数据要进行写时拷贝?

进程具有独立性。多进程运行,需要独享各种资源,多进程运行期间互不干扰,不能让子进程的修改影响到父进程。

2、为什么不在创建子进程的时候就进行数据的拷贝?

子进程不一定会使用父进程的所有数据,并且在子进程不对数据进行写入的情况下,没有必要对数据进行拷贝,我们应该按需分配,在需要修改数据的时候再分配(延时分配),这样可以高效的使用内存空间。

3、代码会不会进行写时拷贝?

90%的情况下是不会的,但这并不代表代码不能进行写时拷贝,例如在进行进程替换的时候,则需要进行代码的写时拷贝。

fork常规用法

一个进程希望复制自己,使子进程同时执行不同的代码段。例如父进程等待客户端请求,生成子进程来处理请求。
一个进程要执行一个不同的程序。例如子进程从fork返回后,调用exec函数。

fork调用失败的原因

fork函数创建子进程也可能会失败,有以下两种情况:

系统中有太多的进程,内存空间不足,子进程创建失败。
实际用户的进程数超过了限制,子进程创建失败。

二、进程终止

进程退出场景

进程退出只有三种情况:

代码运行完毕,结果正确。
代码运行完毕,结果不正确。
代码异常终止(进程崩溃)。

进程退出码

我们都知道main函数是代码的入口,但实际上main函数只是用户级别代码的入口,main函数也是被其他函数调用的,例如在VS2019当中main函数就是被一个名为__tmainCRTStartup的函数所调用,而__tmainCRTStartup函数又是通过加载器被操作系统所调用的,也就是说main函数是间接性被操作系统所调用的。

既然main函数是间接性被操作系统所调用的,那么当main函数调用结束后就应该给操作系统返回相应的退出信息,而这个所谓的退出信息就是以退出码的形式作为main函数的返回值返回,我们一般以0表示代码成功执行完毕,以非0表示代码执行过程中出现错误,这就是为什么我们都在main函数的最后返回0的原因。

当我们的代码运行起来就变成了进程,当进程结束后main函数的返回值实际上就是该进程的进程退出码,我们可以使用echo $?命令查看最近一次进程退出的退出码信息。
例如,对于下面这个简单的代码:

在这里插入图片描述

代码运行结束后,我们可以查看该进程的进程退出码。

 echo $?

在这里插入图片描述

这时便可以确定main函数是顺利执行完毕了。

为什么以0表示代码执行成功,以非0表示代码执行错误?

因为代码执行成功只有一种情况,而代码执行错误却有多种原因,例如内存空间不足、非法访问以及栈溢出等等,我们就可以用这些非0的数字分别表示代码执行错误的原因。

C语言当中的strerror函数可以通过错误码,获取该错误码在C语言当中对应的错误信息:
在这里插入图片描述

运行代码后我们就可以看到各个错误码所对应的错误信息:
在这里插入图片描述

实际上Linux中的ls、pwd等命令都是可执行程序,使用这些命令后我们也可以查看其对应的退出码。可以看到,这些命令成功执行后,其退出码也是0。
在这里插入图片描述

但是命令执行错误后,其退出码就是非0的数字,该数字具体代表某一错误信息。
在这里插入图片描述

注意: 退出码都有对应的字符串含义,帮助用户确认执行失败的原因,而这些退出码具体代表什么含义是人为规定的,不同环境下相同的退出码的字符串含义可能不同。

进程正常退出

return退出

在main函数中使用return退出进程是我们常用的方法。

例如,在main函数最后使用return退出进程。
在这里插入图片描述

运行结果:

在这里插入图片描述

exit函数

使用exit函数退出进程也是我们常用的方法,exit函数可以在代码中的任何地方退出进程,并且exit函数在退出进程前会做一系列工作:

执行用户通过atexit或on_exit定义的清理函数。
关闭所有打开的流,所有的缓存数据均被写入。
调用_exit函数终止进程。

例如,以下代码中exit终止进程前会将缓冲区当中的数据输出。
在这里插入图片描述

运行结果:

在这里插入图片描述

_exit函数

使用_exit函数退出进程的方法我们并不经常使用,_exit函数也可以在代码中的任何地方退出进程,但是_exit函数会直接终止进程,并不会在退出进程前会做任何收尾工作。

例如,以下代码中使用_exit终止进程,则缓冲区当中的数据将不会被输出。
在这里插入图片描述

运行结果:

在这里插入图片描述

return、exit和_exit之间的区别与联系

return、exit和_exit之间的区别

只有在main函数当中的return才能起到退出进程的作用,子函数当中return不能退出进程,而exit函数和_exit函数在代码中的任何地方使用都可以起到退出进程的作用。

使用exit函数退出进程前,exit函数会执行用户定义的清理函数、冲刷缓冲,关闭流等操作,然后再终止进程,而_exit函数会直接终止进程,不会做任何收尾工作。

return、exit和_exit之间的联系

执行return num等同于执行exit(num),因为调用main函数运行结束后,会将main函数的返回值当做exit的参数来调用exit函数。

使用exit函数退出进程前,exit函数会先执行用户定义的清理函数、冲刷缓冲,关闭流等操作,然后再调用_exit函数终止进程。

进程异常退出

情况一:向进程发生信号导致进程异常退出。

例如,在进程运行过程中向进程发生kill -9信号使得进程异常退出,或是使用Ctrl+C使得进程异常退出等。

情况二:代码错误导致进程运行时异常退出。

例如,代码当中存在野指针问题使得进程运行时异常退出,或是出现除0的情况使得进程运行时异常退出等。

三、进程等待

进程等待的必要性

子进程退出,父进程如果不读取子进程的退出信息,子进程就会变成僵尸进程,进而造成内存泄漏。
进程一旦变成僵尸进程,那么就算是kill -9命令也无法将其杀死,谁也无法杀死一个已经死去的进程。
对于一个进程,最关心自己的就是其父进程,因为父进程需要知道自己派给子进程的任务完成的如何。
父进程需要通过进程等待的方式,回收子进程资源,获取子进程的退出信息。

获取子进程status

下面进程等待所使用的两个函数wait和waitpid,都有一个status参数,该参数是一个输出型参数,由操作系统进行填充。如果对status参数传入NULL,表示不关心子进程的退出状态信息。否则,操作系统会通过该参数,将子进程的退出信息反馈给父进程。

status是一个整型变量,但status不能简单的当作整型来看待,status的不同比特位所代表的信息不同,具体细节如下(只研究status低16比特位)

在status的低16比特位当中,高8位表示进程的退出状态,即退出码。进程若是被信号所杀,则低7位表示终止信号,而第8位比特位是core dump标志。
在这里插入图片描述

我们通过一系列位操作,就可以根据status得到进程的退出码和退出信号。

exitCode = (status >> 8) & 0xFF; //退出码
exitSignal = status & 0x7F;      //退出信号

对于此,系统当中提供了两个宏来获取退出码和退出信号。

WIFEXITED(status):用于查看进程是否是正常退出,本质是检查是否收到信号。
WEXITSTATUS(status):用于获取进程的退出码。

exitNormal = WIFEXITED(status);  //是否正常退出
exitCode = WEXITSTATUS(status);  //获取退出码

注意 当一个进程非正常退出时,说明该进程是被信号所杀,那么该进程的退出码也就没有意义了。

进程等待的方法

wait方法

函数原型:pid_t wait(int* status);

作用:等待任意子进程。

返回值:等待成功返回被等待进程的pid,等待失败返回-1。

参数:输出型参数,获取子进程的退出状态,不关心可设置为NULL。

例如,创建子进程后,父进程可使用wait函数一直等待子进程,直到子进程退出后读取子进程的退出信息。

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/wait.h>
#include <sys/types.h>
int main()
{
	pid_t id = fork();
	if(id == 0){
		//child
		int count = 10;
		while(count--){
			printf("I am child...PID:%d, PPID:%d\n", getpid(), getppid());
			sleep(1);
		}
		exit(0);
	}
	//father
	int status = 0;
	pid_t ret = wait(&status);
	if(ret > 0){
		//wait success
		printf("wait child success...\n");
		if(WIFEXITED(status)){
			//exit normal
			printf("exit code:%d\n", WEXITSTATUS(status));
		}
	}
	sleep(3);
	return 0;
}

我们可以使用以下监控脚本对进程进行实时监控:

while :; do ps axj | head -1 && ps axj | grep proc | grep -v grep;echo "######################";sleep 1;done

这时我们可以看到,当子进程退出后,父进程读取了子进程的退出信息,子进程也就不会变成僵尸进程了。
在这里插入图片描述

waitpid方法

函数原型:pid_t waitpid(pid_t pid, int* status, int options);

作用:等待指定子进程或任意子进程。

返回值:
1、等待成功返回被等待进程的pid。
2、如果设置了选项WNOHANG,而调用中waitpid发现没有已退出的子进程可收集,则返回0。
3、如果调用中出错,则返回-1,这时errno会被设置成相应的值以指示错误所在。

参数:
1、pid:待等待子进程的pid,若设置为-1,则等待任意子进程。
2、status:输出型参数,获取子进程的退出状态,不关心可设置为NULL。
3、options:当设置为WNOHANG时,若等待的子进程没有结束,则waitpid函数直接返回0,不予以等待。若正常结束,则返回该子进程的pid。

例如,创建子进程后,父进程可使用waitpid函数一直等待子进程(此时将waitpid的第三个参数设置为0),直到子进程退出后读取子进程的退出信息。

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/wait.h>
#include <sys/types.h>
int main()
{
	pid_t id = fork();
	if (id == 0){
		//child          
		int count = 10;
		while (count--){
			printf("I am child...PID:%d, PPID:%d\n", getpid(), getppid());
			sleep(1);
		}
		exit(0);
	}
	//father           
	int status = 0;
	pid_t ret = waitpid(id, &status, 0);
	if (ret >= 0){
		//wait success                    
		printf("wait child success...\n");
		if (WIFEXITED(status)){
			//exit normal                                 
			printf("exit code:%d\n", WEXITSTATUS(status));
		}
		else{
			//signal killed                              
			printf("killed by siganl %d\n", status & 0x7F);
		}
	}
	sleep(3);
	return 0;
}

在父进程运行过程中,我们可以尝试使用kill -9命令将子进程杀死,这时父进程也能等待子进程成功。
在这里插入图片描述

注意: 被信号杀死而退出的进程,其退出码将没有意义。

多进程创建以及等待的代码模型

上面演示的都是父进程创建以及等待一个子进程的例子,实际上我们还可以同时创建多个子进程,然后让父进程依次等待子进程退出,这叫做多进程创建以及等待的代码模型。

例如,以下代码中同时创建了10个子进程,同时将子进程的pid放入到ids数组当中,并将这10个子进程退出时的退出码设置为该子进程pid在数组ids中的下标,之后父进程再使用waitpid函数指定等待这10个子进程。

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/wait.h>
int main()
{
	pid_t ids[10];
	for (int i = 0; i < 10; i++){
		pid_t id = fork();
		if (id == 0){
			//child
			printf("child process created successfully...PID:%d\n", getpid());
			sleep(3);
			exit(i); //将子进程的退出码设置为该子进程PID在数组ids中的下标
		}
		//father
		ids[i] = id;
	}
	for (int i = 0; i < 10; i++){
		int status = 0;
		pid_t ret = waitpid(ids[i], &status, 0);
		if (ret >= 0){
			//wait child success
			printf("wiat child success..PID:%d\n", ids[i]);
			if (WIFEXITED(status)){
				//exit normal
				printf("exit code:%d\n", WEXITSTATUS(status));
			}
			else{
				//signal killed
				printf("killed by signal %d\n", status & 0x7F);
			}
		}
	}
	return 0;
}

运行代码,这时我们便可以看到父进程同时创建多个子进程,当子进程退出后,父进程再依次读取这些子进程的退出信息。
在这里插入图片描述

基于非阻塞接口的轮询检测方案

上述所给例子中,当子进程未退出时,父进程都在一直等待子进程退出,在等待期间,父进程不能做任何事情,这种等待叫做阻塞等待。

实际上我们可以让父进程不要一直等待子进程退出,而是当子进程未退出时父进程可以做一些自己的事情,当子进程退出时再读取子进程的退出信息,即非阻塞等待。

做法很简单,向waitpid函数的第三个参数potions传入WNOHANG,这样一来,等待的子进程若是没有结束,那么waitpid函数将直接返回0,不予以等待。而等待的子进程若是正常结束,则返回该子进程的pid。

例如,父进程可以隔一段时间调用一次waitpid函数,若是等待的子进程尚未退出,则父进程可以先去做一些其他事,过一段时间再调用waitpid函数读取子进程的退出信息。

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/wait.h>
int main()
{
	pid_t id = fork();
	if (id == 0){
		//child
		int count = 3;
		while (count--){
			printf("child do something...PID:%d, PPID:%d\n", getpid(), getppid());
			sleep(3);
		}
		exit(0);
	}
	//father
	while (1){
		int status = 0;
		pid_t ret = waitpid(id, &status, WNOHANG);
		if (ret > 0){
			printf("wait child success...\n");
			printf("exit code:%d\n", WEXITSTATUS(status));
			break;
		}
		else if (ret == 0){
			printf("father do other things...\n");
			sleep(1);
		}
		else{
			printf("waitpid error...\n");
			break;
		}
	}
	return 0;
}

运行结果就是,父进程每隔一段时间就去查看子进程是否退出,若未退出,则父进程先去忙自己的事情,过一段时间再来查看,直到子进程退出后读取子进程的退出信息。

在这里插入图片描述

四、进程程序替换

替换原理

用fork创建子进程后,子进程执行的是和父进程相同的程序(但有可能执行不同的代码分支),若想让子进程执行另一个程序,往往需要调用一种exec函数。

当进程调用一种exec函数时,该进程的用户空间代码和数据完全被新程序替换,并从新程序的启动例程开始执行。

当进行进程程序替换时,有没有创建新的进程?

进程程序替换之后,该进程对应的PCB、进程地址空间以及页表等数据结构都没有发生改变,只是进程在物理内存当中的数据和代码发生了改变,所以并没有创建新的进程,而且进程程序替换前后该进程的pid并没有改变。

子进程进行进程程序替换后,会影响父进程的代码和数据吗?

子进程刚被创建时,与父进程共享代码和数据,但当子进程需要进行进程程序替换时,也就意味着子进程需要对其数据和代码进行写入操作,这时便需要将父子进程共享的代码和数据进行写时拷贝,此后父子进程的代码和数据也就分离了,因此子进程进行程序替换后不会影响父进程的代码和数据。

替换函数

替换函数有六种以exec开头的函数,它们统称为exec函数:

一、int execl(const char *path, const char *arg, …);

第一个参数是要执行程序的路径,第二个参数是可变参数列表,表示你要如何执行这个程序,并以NULL结尾。例如,要执行的是ls程序。

execl("/usr/bin/ls", "ls", "-a", "-i", "-l", NULL);

二、int execlp(const char *file, const char *arg, …);

第一个参数是要执行程序的名字,第二个参数是可变参数列表,表示你要如何执行这个程序,并以NULL结尾。例如,要执行的是ls程序。

execlp("ls", "ls", "-a", "-i", "-l", NULL);

三、int execle(const char *path, const char *arg, …, char *const envp[]);

第一个参数是要执行程序的路径,第二个参数是可变参数列表,表示你要如何执行这个程序,并以NULL结尾,第三个参数是你自己设置的环境变量。

例如,你设置了MYVAL环境变量,在mycmd程序内部就可以使用该环境变量。

char* myenvp[] = { "MYVAL=2021", NULL };
execle("./mycmd", "mycmd", NULL, myenvp);

四、int execv(const char *path, char *const argv[]);

第一个参数是要执行程序的路径,第二个参数是一个指针数组,数组当中的内容表示你要如何执行这个程序,数组以NULL结尾。

例如,要执行的是ls程序。

char* myargv[] = { "ls", "-a", "-i", "-l", NULL };
execv("/usr/bin/ls", myargv);

五、int execvp(const char *file, char *const argv[]);

第一个参数是要执行程序的名字,第二个参数是一个指针数组,数组当中的内容表示你要如何执行这个程序,数组以NULL结尾。例如,要执行的是ls程序。

char* myargv[] = { "ls", "-a", "-i", "-l", NULL };
execvp("ls", myargv);

六、int execve(const char *path, char *const argv[], char *const envp[]);

第一个参数是要执行程序的路径,第二个参数是一个指针数组,数组当中的内容表示你要如何执行这个程序,数组以NULL结尾,第三个参数是你自己设置的环境变量。

例如,你设置了MYVAL环境变量,在mycmd程序内部就可以使用该环境变量。

char* myargv[] = { "mycmd", NULL };
char* myenvp[] = { "MYVAL=2021", NULL };
execve("./mycmd", myargv, myenvp);

函数解释

这些函数如果调用成功,则加载指定的程序并从启动代码开始执行,不再返回。
如果调用出错,则返回-1。

也就是说,exec系列函数只要返回了,就意味着调用失败。

命名理解

这六个exec系列函数的函数名都以exec开头,其后缀的含义如下:

l(list):表示参数采用列表的形式,一一列出。
v(vector):表示参数采用数组的形式。
p(path):表示能自动搜索环境变量PATH,进行程序查找。
e(env):表示可以传入自己设置的环境变量。

函数名	参数格式	是否带路径	是否使用当前环境变量
execl	列表		否			是
execlp	列表		是			是
execle	列表		否			否,需自己组装环境变量
execv	数组		否			是
execvp	数组		是			是
execve	数组		否			否,需自己组装环境变量

事实上,只有execve才是真正的系统调用,其它五个函数最终都是调用的execve,所以execve在man手册的第2节,而其它五个函数在man手册的第3节,也就是说其他五个函数实际上是对系统调用execve进行了封装,以满足不同用户的不同调用场景的。

下图为exec系列函数族之间的关系:

在这里插入图片描述

做一个简易的shell

shell也就是命令行解释器,其运行原理就是:当有命令需要执行时,shell创建子进程,让子进程执行命令,而shell只需等待子进程退出即可。
在这里插入图片描述

其实shell需要执行的逻辑非常简单,其只需循环执行以下步骤:

获取命令行。
解析命令行。
创建子进程。
替换子进程。
等待子进程退出。

其中,创建子进程使用fork函数,替换子进程使用exec系列函数,等待子进程使用wait或者waitpid函数。

于是我们可以很容易实现一个简易的shell,代码如下:

#include <stdio.h>
#include <pwd.h>
#include <string.h>
#include <unistd.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/wait.h>
#define LEN 1024 //命令最大长度
#define NUM 32 //命令拆分后的最大个数
int main()
{
	char cmd[LEN]; //存储命令
	char* myargv[NUM]; //存储命令拆分后的结果
	char hostname[32]; //主机名
	char pwd[128]; //当前目录
	while (1){
		//获取命令提示信息
		struct passwd* pass = getpwuid(getuid());
		gethostname(hostname, sizeof(hostname)-1);
		getcwd(pwd, sizeof(pwd)-1);
		int len = strlen(pwd);
		char* p = pwd + len - 1;
		while (*p != '/'){
			p--;
		}
		p++;
		//打印命令提示信息
		printf("[%s@%s %s]$ ", pass->pw_name, hostname, p);
		//读取命令
		fgets(cmd, LEN, stdin);
		cmd[strlen(cmd) - 1] = '\0';
		//拆分命令
		myargv[0] = strtok(cmd, " ");
		int i = 1;
		while (myargv[i] = strtok(NULL, " ")){
			i++;
		}
		pid_t id = fork(); //创建子进程执行命令
		if (id == 0){
			//child
			execvp(myargv[0], myargv); //child进行程序替换
			exit(1); //替换失败的退出码设置为1
		}
		//shell
		int status = 0;
		pid_t ret = waitpid(id, &status, 0); //shell等待child退出
		if (ret > 0){
			printf("exit code:%d\n", WEXITSTATUS(status)); //打印child的退出码
		}
	}
	return 0;
}

效果展示:
请添加图片描述

说明:当执行./myshell命令后,便是我们自己实现的shell在进行命令行解释,我们自己实现的shell在子进程退出后都打印了子进程的退出码,我们可以根据这一点来区分我们当前使用的是Linux操作系统的shell还是我们自己实现的shell。

总结:

今天我们学习了Linux进程控制的相关知识,了解了进程的创建,终止,等待、程序替换等 。接下来,我们将继续学习Linux的其他知识。希望我的文章和讲解能对大家的学习提供一些帮助。

当然,本文仍有许多不足之处,欢迎各位小伙伴们随时私信交流、批评指正!我们下期见~

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1047421.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Latex写论文时图的设置

我们在写论文&#xff0c;使用官方Latex模板可能经常遇到这种情况&#xff1a; 图和文字间距太大&#xff0c;这是因为排版时图片插入到了一个段的中间导致的。 解决方法是&#xff08;注意控制字符\vspace一定要放在引用图的代码块里面&#xff09;&#xff1a; \begin{figu…

浅谈电气防火保护器在地下商场的应用

摘 要&#xff1a;近年来&#xff0c;我国城市发展速度加速。很多城市大力建造地下建筑设施&#xff0c;比如地铁、地下停车场和地下商场等。地下商场属于人员密集型建筑&#xff0c;其防火设计一直令相关的专家头疼。由于人员密集&#xff0c;防火处理不好将酿成灾难性的后果。…

【数据结构与算法】 - 时间复杂度和空间复杂度、二分查找、线性查找

数据结构与算法 1. 数据结构的定义2. 二分查找2.1 二分查找的定义2.2 二分查找分析2.3 二分查找实现2.4 二分查找算法图解2.5 二分算法引发的问题2.6 二分算法改良版2.7 二分算法改良版解析2.8 二分算法改良版图解2.9 二分算法改良版注意事项 3. 时间复杂度3.1 时间复杂度的概念…

数据计算-第15届蓝桥杯第一次STEMA测评Scratch真题精选

[导读]&#xff1a;超平老师的《Scratch蓝桥杯真题解析100讲》已经全部完成&#xff0c;后续会不定期解读蓝桥杯真题&#xff0c;这是Scratch蓝桥杯真题解析第154讲。 第15届蓝桥杯第1次STEMA测评已于2023年8月20日落下帷幕&#xff0c;编程题一共有6题&#xff0c;分别如下&a…

ThreeJS-3D教学二:基础形状展示

three中提供了22 个基础模型&#xff0c;此案例除了 EdgesGeometry、ExtrudeGeometry、TextGeometry、WireframeGeometry&#xff0c;涵盖 17 个形状。 Fog 雾化设置&#xff0c;这是scene场景效果EdgesGeometry , WireframeGeometry 更多地可能作为辅助功能去查看几何体的边和…

修炼k8s+flink+hdfs+dlink(一:安装flink)

一&#xff1a;standalone的ha环境部署。 创建目录&#xff0c;上传安装包。 mkdir /opt/app/flink 上传安装包到本目录。 tar -zxvf flink-1.13.6-bin-scala_2.12.tgz配置参数。 在flink-conf.yaml中添加zookeeper配置 jobmanager.rpc.address: node01 high-availability: …

论文浅尝 | INGRAM:通过关系图的归纳知识图谱嵌入

笔记整理&#xff1a;郭荣辉&#xff0c;天津大学硕士 链接&#xff1a;https://arxiv.org/abs/2305.19987 动机 归纳知识图谱补全是预测训练期间没有观察到的新实体之间缺失的三元组的任务。虽然大多数归纳知识图谱补全方法假定所有实体都是新的&#xff0c;但它们不允许在推理…

【c语言的malloc函数介绍】

malloc&#xff08;memory allocation的缩写&#xff09;是C语言中的一个函数&#xff0c;用于动态分配内存空间。这个函数允许你在程序运行时请求指定大小的内存块&#xff0c;以供后续使用。malloc函数属于标准库函数&#xff0c;需要包含头文件#include <stdlib.h> 才…

使用Vue、ElementUI实现登录注册,配置axios全局设置,解决CORS跨域问题

目录 引言 什么是ElementUI&#xff1f; 步骤1&#xff1a;创建Vue组件用于用户登录和注册 1. 基于SPA项目完成登录注册 在SPA项目中添加elementui依赖 在main.js中添加elementui模块 创建用户登录注册组件 配置路由 修改项目端口并启动项目 静态页面展示图 步骤2&#x…

搭建qml box2d开发环境

box2d是开源的优秀物理引擎 box2d官网 https://box2d.org/ qml box2d插件工程 https://gitee.com/gao_yao_yao/qml-box2d 1. qml box2d插件工程 下载&#xff0c;解压qml-box2d-master.zip&#xff0c;用qt打开box2d.pro&#xff0c;编译Debug|Release拷贝Box2D.dll|Box2Dd.…

LeetCode算法二叉树—226. 翻转二叉树

目录 226. 翻转二叉树 代码&#xff1a; 运行结果&#xff1a; 给你一棵二叉树的根节点 root &#xff0c;翻转这棵二叉树&#xff0c;并返回其根节点。 示例 1&#xff1a; 输入&#xff1a;root [4,2,7,1,3,6,9] 输出&#xff1a;[4,7,2,9,6,3,1]示例 2&#xff1a; 输入…

easyrecovery好用吗 easyrecovery软件收费吗

EasyRecovery是一款专业的数据恢复软件&#xff0c;它功能强大且性价比高&#xff0c;能够精确找回需要的文件&#xff0c;方便又快捷。那么Easyrecovery好用吗&#xff0c;Easyrecovery软件收费吗。今天我为大家解答一下这两个问题。 一、Easyrecovery好用吗 EasyRcovery可用…

系统接口响应信息通用加密设计

设计目的 出于对一些敏感信息的安全性考虑&#xff0c;接口的响应信息需要进行加密&#xff0c;避免明文传输 使用场景 本系统前端响应信息加密 第三方系统响应信息加密 功能设计思路 配置模式加密 使用场景&#xff1a;本系统前端响应信息加密 在nacos中配置需要加密的…

用于生物分子修饰的Alkyne NHS ester,906564-59-8

产品简介&#xff1a;用于生物分子修饰的炔烃NHS酯。铜催化的化学反应中的炔基几乎从未在天然分子中遇到过。然而&#xff0c;这种NHS酯允许将炔基连接到氨基上&#xff0c;氨基在自然界中普遍存在&#xff0c;存在于蛋白质、肽、合成氨基DNA和许多小分子中。炔基随后可以通过铜…

langchain+gpt+agent

一.agentConversation 通过用户问题&#xff0c;来选择 import json import os import refrom langchain import FAISS, PromptTemplate, LLMChain from langchain.agents import initialize_agent, Tool, AgentType from langchain.chains import RetrievalQA from langchai…

C++ | C++11新特性(下)

前言 前面我们介绍了C11列表初始化、新的类功能以及右值引用等新特性&#xff0c;本文继续介绍关于可变参数模板以及lambda表达式等新语法&#xff1b; 一、可变参数模板 在C11前&#xff0c;我们有普通固定数量模板参数&#xff0c;但对于可变参数&#xff0c;我们无从下手&am…

淘宝电商必备的大数据应用

在日常生活中&#xff0c;大家总能听到“大数据”“人工智能”的说法。现在的大数据技术应用&#xff0c;从大到巨大科学研究、社会信息审查、搜索引擎&#xff0c;小到社交联结、餐厅推荐等等&#xff0c;已经渗透到我们生活中的方方面面。到底大数据在电商行业可以怎么用&…

什么是EventEmitter?它在Node.js中有什么作用?

聚沙成塔每天进步一点点 ⭐ 专栏简介⭐ 什么是EventEmitter&#xff1f;⭐ 它在Node.js中的作用是什么&#xff1f;⭐ 写在最后 ⭐ 专栏简介 前端入门之旅&#xff1a;探索Web开发的奇妙世界 欢迎来到前端入门之旅&#xff01;感兴趣的可以订阅本专栏哦&#xff01;这个专栏是为…

轻松上手Docker:学习如何创建和运行自己的Docker容器

文章目录 轻松上手Docker&#xff1a;学习如何创建和运行自己的Docker容器容器的介绍Docker的技术架构容器的工作机制&#xff08;Docker&#xff09;容器的关键技术 - NamespaceNamespace隔离说明 容器的关键技术 - CgroupDocker环境搭建1&#xff09;安装基础软件包2&#xf…

分类预测 | Matlab实现SSA-CNN-SVM麻雀算法优化卷积支持向量机分类预测

分类预测 | Matlab实现SSA-CNN-SVM麻雀算法优化卷积支持向量机分类预测 目录 分类预测 | Matlab实现SSA-CNN-SVM麻雀算法优化卷积支持向量机分类预测分类效果基本描述程序设计参考资料 分类效果 基本描述 1.Matlab实现SSA-CNN-SVM麻雀算法优化卷积支持向量机分类预测&#xff0…