import numpy as np
import matplotlib.pyplot as plt
# Step 1: Generate 10,000 random theta values from U([0, 1])
n =10000
theta_values = np.random.rand(n)# Define the function to compute weights for a given thetadefcompute_weight(theta):return((2+ theta)**125)*((1- theta)**38)*(theta **34)# Compute the weights for all theta values
weights = np.array([compute_weight(theta)for theta in theta_values])# Normalize the weights to make them probabilities
weights /= np.sum(weights)# Step 2: Resample theta values based on the computed weights
resampled_theta_values = np.random.choice(theta_values, size=n, p=weights)# Plot a histogram of the resampled theta values
plt.hist(resampled_theta_values, bins=50, density=True, alpha=0.7)
plt.title("Histogram of Resampled Theta Values")
plt.xlabel("Theta")
plt.ylabel("Frequency")
plt.show()
文章目录 版权声明快捷键ctrl c 强制停止ctrl d 退出、登出history命令光标移动快捷键清屏快捷键 软件安装命令常见linux系统包管理器yum命令apt命令 systemctl命令软连接日期&时区修改linux时区ntp程序 IP地址&主机名ip&主机名域名解析win配置主机名映射虚拟机…
A Spatial–Spectral Joint Attention Network for Change Detection in Multispectral Imagery
(一种用于多光谱图像变化检测的空间-光谱联合注意网络)
变化检测是通过比较双时相图像来确定和评估变化,这是遥感领域的一项具有挑战性的任务…