计算机竞赛 深度学习乳腺癌分类

news2024/10/7 2:22:50

文章目录

  • 1 前言
  • 2 前言
  • 3 数据集
    • 3.1 良性样本
    • 3.2 病变样本
  • 4 开发环境
  • 5 代码实现
    • 5.1 实现流程
    • 5.2 部分代码实现
      • 5.2.1 导入库
      • 5.2.2 图像加载
      • 5.2.3 标记
      • 5.2.4 分组
      • 5.2.5 构建模型训练
  • 6 分析指标
    • 6.1 精度,召回率和F1度量
    • 6.2 混淆矩阵
  • 7 结果和结论
  • 8 最后

1 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 深度学习乳腺癌分类

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

2 前言

乳腺癌是全球第二常见的女性癌症。2012年,它占所有新癌症病例的12%,占所有女性癌症病例的25%。

当乳腺细胞生长失控时,乳腺癌就开始了。这些细胞通常形成一个肿瘤,通常可以在x光片上直接看到或感觉到有一个肿块。如果癌细胞能生长到周围组织或扩散到身体的其他地方,那么这个肿瘤就是恶性的。

以下是报告:

  • 大约八分之一的美国女性(约12%)将在其一生中患上浸润性乳腺癌。
  • 2019年,美国预计将有268,600例新的侵袭性乳腺癌病例,以及62,930例新的非侵袭性乳腺癌。
  • 大约85%的乳腺癌发生在没有乳腺癌家族史的女性身上。这些发生是由于基因突变,而不是遗传突变
  • 如果一名女性的一级亲属(母亲、姐妹、女儿)被诊断出患有乳腺癌,那么她患乳腺癌的风险几乎会增加一倍。在患乳腺癌的女性中,只有不到15%的人的家人被诊断出患有乳腺癌。

3 数据集

该数据集为学长实验室数据集。

搜先这是图像二分类问题。我把数据拆分如图所示


dataset train
benign
b1.jpg
b2.jpg
//
malignant
m1.jpg
m2.jpg
// validation
benign
b1.jpg
b2.jpg
//
malignant
m1.jpg
m2.jpg
//…

训练文件夹在每个类别中有1000个图像,而验证文件夹在每个类别中有250个图像。

3.1 良性样本

在这里插入图片描述
在这里插入图片描述

3.2 病变样本

在这里插入图片描述
在这里插入图片描述

4 开发环境

  • scikit-learn
  • keras
  • numpy
  • pandas
  • matplotlib
  • tensorflow

5 代码实现

5.1 实现流程

完整的图像分类流程可以形式化如下:

我们的输入是一个由N个图像组成的训练数据集,每个图像都有相应的标签。

然后,我们使用这个训练集来训练分类器,来学习每个类。

最后,我们通过让分类器预测一组从未见过的新图像的标签来评估分类器的质量。然后我们将这些图像的真实标签与分类器预测的标签进行比较。

5.2 部分代码实现

5.2.1 导入库

import json
import math
import os
import cv2
from PIL import Image
import numpy as np
from keras import layers
from keras.applications import DenseNet201
from keras.callbacks import Callback, ModelCheckpoint, ReduceLROnPlateau, TensorBoard
from keras.preprocessing.image import ImageDataGenerator
from keras.utils.np_utils import to_categorical
from keras.models import Sequential
from keras.optimizers import Adam
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.metrics import cohen_kappa_score, accuracy_score
import scipy
from tqdm import tqdm
import tensorflow as tf
from keras import backend as K
import gc
from functools import partial
from sklearn import metrics
from collections import Counter
import json
import itertools

5.2.2 图像加载

接下来,我将图像加载到相应的文件夹中。

def Dataset_loader(DIR, RESIZE, sigmaX=10):
    IMG = []
    read = lambda imname: np.asarray(Image.open(imname).convert("RGB"))
    for IMAGE_NAME in tqdm(os.listdir(DIR)):
        PATH = os.path.join(DIR,IMAGE_NAME)
        _, ftype = os.path.splitext(PATH)
        if ftype == ".png":
            img = read(PATH)
           
            img = cv2.resize(img, (RESIZE,RESIZE))
           
            IMG.append(np.array(img))
    return IMG

benign_train = np.array(Dataset_loader('data/train/benign',224))
malign_train = np.array(Dataset_loader('data/train/malignant',224))
benign_test = np.array(Dataset_loader('data/validation/benign',224))
malign_test = np.array(Dataset_loader('data/validation/malignant',224))

5.2.3 标记

之后,我创建了一个全0的numpy数组,用于标记良性图像,以及全1的numpy数组,用于标记恶性图像。我还重新整理了数据集,并将标签转换为分类格式。

benign_train_label = np.zeros(len(benign_train))
malign_train_label = np.ones(len(malign_train))
benign_test_label = np.zeros(len(benign_test))
malign_test_label = np.ones(len(malign_test))

X_train = np.concatenate((benign_train, malign_train), axis = 0)
Y_train = np.concatenate((benign_train_label, malign_train_label), axis = 0)
X_test = np.concatenate((benign_test, malign_test), axis = 0)
Y_test = np.concatenate((benign_test_label, malign_test_label), axis = 0)

s = np.arange(X_train.shape[0])
np.random.shuffle(s)
X_train = X_train[s]
Y_train = Y_train[s]

s = np.arange(X_test.shape[0])
np.random.shuffle(s)
X_test = X_test[s]
Y_test = Y_test[s]

Y_train = to_categorical(Y_train, num_classes= 2)
Y_test = to_categorical(Y_test, num_classes= 2)

5.2.4 分组

然后我将数据集分成两组,分别具有80%和20%图像的训练集和测试集。让我们看一些样本良性和恶性图像

x_train, x_val, y_train, y_val = train_test_split(
    X_train, Y_train, 
    test_size=0.2, 
    random_state=11
)

w=60
h=40
fig=plt.figure(figsize=(15, 15))
columns = 4
rows = 3

for i in range(1, columns*rows +1):
    ax = fig.add_subplot(rows, columns, i)
    if np.argmax(Y_train[i]) == 0:
        ax.title.set_text('Benign')
    else:
        ax.title.set_text('Malignant')
    plt.imshow(x_train[i], interpolation='nearest')
plt.show()

在这里插入图片描述

5.2.5 构建模型训练

我使用的batch值为16。batch是深度学习中最重要的超参数之一。我更喜欢使用更大的batch来训练我的模型,因为它允许从gpu的并行性中提高计算速度。但是,众所周知,batch太大会导致泛化效果不好。在一个极端下,使用一个等于整个数据集的batch将保证收敛到目标函数的全局最优。但是这是以收敛到最优值较慢为代价的。另一方面,使用更小的batch已被证明能够更快的收敛到好的结果。这可以直观地解释为,较小的batch允许模型在必须查看所有数据之前就开始学习。使用较小的batch的缺点是不能保证模型收敛到全局最优。因此,通常建议从小batch开始,通过训练慢慢增加batch大小来加快收敛速度。

我还做了一些数据扩充。数据扩充的实践是增加训练集规模的一种有效方式。训练实例的扩充使网络在训练过程中可以看到更加多样化,仍然具有代表性的数据点。

然后,我创建了一个数据生成器,自动从文件夹中获取数据。Keras为此提供了方便的python生成器函数。

BATCH_SIZE = 16

train_generator = ImageDataGenerator(
        zoom_range=2,  # 设置范围为随机缩放
        rotation_range = 90,
        horizontal_flip=True,  # 随机翻转图片
        vertical_flip=True,  # 随机翻转图片
    )

下一步是构建模型。这可以通过以下3个步骤来描述:

  • 我使用DenseNet201作为训练前的权重,它已经在Imagenet比赛中训练过了。设置学习率为0.0001。

  • 在此基础上,我使用了globalaveragepooling层和50%的dropout来减少过拟合。

  • 我使用batch标准化和一个以softmax为激活函数的含有2个神经元的全连接层,用于2个输出类的良恶性。

  • 我使用Adam作为优化器,使用二元交叉熵作为损失函数。

    def build_model(backbone, lr=1e-4):
        model = Sequential()
        model.add(backbone)
        model.add(layers.GlobalAveragePooling2D())
        model.add(layers.Dropout(0.5))
        model.add(layers.BatchNormalization())
        model.add(layers.Dense(2, activation='softmax'))
        
    
        model.compile(
            loss='binary_crossentropy',
            optimizer=Adam(lr=lr),
            metrics=['accuracy']
        )
        return model
    
    resnet = DenseNet201(
        weights='imagenet',
        include_top=False,
        input_shape=(224,224,3)
    )
    
    model = build_model(resnet ,lr = 1e-4)
    model.summary()
    

让我们看看每个层中的输出形状和参数。

在这里插入图片描述
在训练模型之前,定义一个或多个回调函数很有用。非常方便的是:ModelCheckpoint和ReduceLROnPlateau。

  • ModelCheckpoint:当训练通常需要多次迭代并且需要大量的时间来达到一个好的结果时,在这种情况下,ModelCheckpoint保存训练过程中的最佳模型。

  • ReduceLROnPlateau:当度量停止改进时,降低学习率。一旦学习停滞不前,模型通常会从将学习率降低2-10倍。这个回调函数会进行监视,如果在’patience’(耐心)次数下,模型没有任何优化的话,学习率就会降低。

在这里插入图片描述

该模型我训练了60个epoch。

learn_control = ReduceLROnPlateau(monitor='val_acc', patience=5,
                                  verbose=1,factor=0.2, min_lr=1e-7)

filepath="weights.best.hdf5"
checkpoint = ModelCheckpoint(filepath, monitor='val_acc', verbose=1, save_best_only=True, mode='max')

history = model.fit_generator(
    train_generator.flow(x_train, y_train, batch_size=BATCH_SIZE),
    steps_per_epoch=x_train.shape[0] / BATCH_SIZE,
    epochs=20,
    validation_data=(x_val, y_val),
    callbacks=[learn_control, checkpoint]
)

6 分析指标

评价模型性能最常用的指标是精度。然而,当您的数据集中只有2%属于一个类(恶性),98%属于其他类(良性)时,错误分类的分数就没有意义了。你可以有98%的准确率,但仍然没有发现恶性病例,即预测的时候全部打上良性的标签,这是一个不好的分类器。

history_df = pd.DataFrame(history.history)
history_df[['loss', 'val_loss']].plot()

history_df = pd.DataFrame(history.history)
history_df[['acc', 'val_acc']].plot()

在这里插入图片描述

6.1 精度,召回率和F1度量

为了更好地理解错误分类,我们经常使用以下度量来更好地理解真正例(TP)、真负例(TN)、假正例(FP)和假负例(FN)。

精度反映了被分类器判定的正例中真正的正例样本的比重。

召回率反映了所有真正为正例的样本中被分类器判定出来为正例的比例。

F1度量是准确率和召回率的调和平均值。

在这里插入图片描述

6.2 混淆矩阵

混淆矩阵是分析误分类的一个重要指标。矩阵的每一行表示预测类中的实例,而每一列表示实际类中的实例。对角线表示已正确分类的类。这很有帮助,因为我们不仅知道哪些类被错误分类,还知道它们为什么被错误分类。

from sklearn.metrics import classification_report
classification_report( np.argmax(Y_test, axis=1), np.argmax(Y_pred_tta, axis=1))

from sklearn.metrics import confusion_matrix

def plot_confusion_matrix(cm, classes,
                          normalize=False,
                          title='Confusion matrix',
                          cmap=plt.cm.Blues):
    if normalize:
        cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
        print("Normalized confusion matrix")
    else:
        print('Confusion matrix, without normalization')

    print(cm)

    plt.imshow(cm, interpolation='nearest', cmap=cmap)
    plt.title(title)
    plt.colorbar()
    tick_marks = np.arange(len(classes))
    plt.xticks(tick_marks, classes, rotation=55)
    plt.yticks(tick_marks, classes)
    fmt = '.2f' if normalize else 'd'
    thresh = cm.max() / 2.
    for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
        plt.text(j, i, format(cm[i, j], fmt),
                 horizontalalignment="center",
                 color="white" if cm[i, j] > thresh else "black")

    plt.ylabel('True label')
    plt.xlabel('Predicted label')
    plt.tight_layout()

cm = confusion_matrix(np.argmax(Y_test, axis=1), np.argmax(Y_pred, axis=1))

cm_plot_label =['benign', 'malignant']
plot_confusion_matrix(cm, cm_plot_label, title ='Confusion Metrix for Skin Cancer')

在这里插入图片描述

7 结果和结论

在这里插入图片描述
在这个博客中,学长我演示了如何使用卷积神经网络和迁移学习从一组显微图像中对良性和恶性乳腺癌进行分类,希望对大家有所帮助。

8 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1041169.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【湖科大教书匠】计算机网络随堂笔记第5章(计算机网络运输层)

目录 5.1、运输层概述 概念 进程之间的通信 进程之间通信流程 总结 5.2、运输层端口号、复用与分用的概念 为什么用端口号 发送方的复用和接收方的分用 ​编辑 ​编辑 运输层传输流程 5.3、UDP和TCP的对比 概念 用户数据报协议UDP(User Datagram Protocol&#xf…

P2PNet-Soy原理梳理

前文总结了P2PNet源码以及P2PNet-Soy源码实现方法,相关链接如下: 人群计数P2PNet论文:[2107.12746] Rethinking Counting and Localization in Crowds:A Purely Point-Based Framework (arxiv.org) p2p人群计数源码:GitHub - Te…

商品秒杀系统整理

1、使用redis缓存商品信息 2、互斥锁解决缓存击穿问题,用缓存空值解决缓存穿透问题。 3、CAS乐观锁解决秒杀超卖的问题 4、使用redission实现一人一单。(分布式锁lua)脚本。 5、使用lua脚本进行秒杀资格判断(将库存和用户下单…

三维模型3DTile格式轻量化压缩在移动智能终端应用方面的重要性分析

三维模型3DTile格式轻量化压缩在移动智能终端应用方面的重要性分析 随着移动智能终端设备的不断发展和普及,如智能手机、平板电脑等,以及5G网络技术的推广应用,使得在这些设备上频繁使用三维地理空间数据成为可能。然而,由于这类数…

协议-TCP协议-基础概念02-TCP握手被拒绝-内核参数-指数退避原则-TCP窗口-TCP重传

协议-TCP协议-基础概念02-TCP握手被拒绝-TCP窗口 参考来源: 《极客专栏-网络排查案例课》 TCP连接都是TCP协议沟通的吗? 不是 如果服务端不想接受这次握手,它会怎么做呢? 内核参数中与TCP重试有关的参数(两个) -net.ipv4.tc…

umi+React项目引入字体文件

1. 在public下新建文件夹fonts,将字体文件复制到该文件夹下 2. 在public文件下新建font.css文件 font-face {font-family: YouSheBiaoTiHei;src: url(./fonts/YouSheBiaoTiHei-2.ttf); }3. 在app.ts里面加上导入语句即可引入该字体 import ../public/font.css;

似然和概率

前言 高斯在处理正态分布的首次提出似然,后来英国物理学家,费歇尔 概率是抛硬币之前,根据环境推断概率 似然则相反,根据结果推论环境 P是关于x的函数,比如x为正面朝上的结果,或者反面朝上的结果&#xf…

【计算机网络】基于UDP的简单通讯(服务端)

文章目录 流程代码实现加载库创建套接字绑定ip接收数据发送数据关闭套接字、卸载库 流程 我们UDP通讯就像是在做小买卖,主要就是进行收发数据 实现UDP协议的服务端需要经过五步操作: 加载库(Ws2_32.lib)创建套接字&#xff08…

vue组件的通信

文章目录 组件通信父传子父传子:通过prop来进行通信 子传父先在父组件用注册方法 , 在子组件触发使用 emit 函数 组件间通信-平行组件使用事件总线的方法,也就是把整个vue提出来,当为一个事件总线 其他组件通信父组件 provide来提供变量,然后再子组件中通过inject来注入变量 组…

Java之IO流概述

1.1 什么是IO 生活中,你肯定经历过这样的场景。当你编辑一个文本文件,忘记了ctrls ,可能文件就白白编辑了。当你电脑上插入一个U盘,可以把一个视频,拷贝到你的电脑硬盘里。那么数据都是在哪些设备上的呢?键…

FlashDuty Changelog 2023-09-21 | 自定义字段和开发者中心

FlashDuty:一站式告警响应平台,前往此地址免费体验! 自定义字段 FlashDuty 已支持接入大部分常见的告警系统,我们将推送内容中的大部分信息放到了 Lables 进行展示。尽管如此,我们用户还是会有一些扩展或定制性的需求…

【yolov5】detect.py

执行方法: 代码 # YOLOv5 🚀 by Ultralytics, AGPL-3.0 license """ Run YOLOv5 detection inference on images, videos, directories, globs, YouTube, webcam, streams, etc.Usage - sources:$ python detect.py --weights yolov5s.pt --source …

面经分享 | 某康安全开发工程师

本文由掌控安全学院 - sbhglqy 投稿 一、反射型XSS跟DOM型XSS的最大区别 DOM型xss和别的xss最大的区别就是它不经过服务器,仅仅是通过网页本身的JavaScript进行渲染触发的。 二、Oracle数据库了解多吗 平常用的多的是MySQL数据库,像Oracle数据库也有…

PHP脚本导出MySQL数据库

背景:有时候需要同步数据库的表结构和部分数据,同步全表数据非常大,也不适合。还有一个种办法是使用数据库的dump命令执行备份,无法进入服务器?没有权限怎么办? 这里只要能访问服务器中的 information_sch…

前端项目练习(练习-003-webpack-01)

学习webpack前,首先,创建一个web-003项目,内容和web-002一样。(注意将package.json中的name改为web-003) 想想,我们开发Java 的时候,Maven帮我们做的主要是编译,打包等等内容。开发前…

org.quartz.SchedulerConfigException: DataSource name not set.

解决: JobStore配置 原: prop.put("org.quartz.jobStore.class", "org.quartz.impl.jdbcjobstore.JobStoreTX"); 改为: prop.put("org.quartz.jobStore.class", "org.springframework.scheduling.qu…

论文笔记:ST2Vec: Spatio-Temporal Trajectory SimilarityLearning in Road Networks

2022 KDD 1 intro 现有的轨迹相似性学习方案强调空间相似性而忽视了时空轨迹的时间维度,这使得它们在有时间感知的场景中效率低下 如上图,在拼车过程中,T1表示司机计划的行程,T2和T3是两个想要搭车的人。T1和T2在空间上更接近&am…

Mac 苹果系统使用nvm use 切换node版本号

windows在使用 nvm 管理并切换 node 时,通过 nvm use 切换node版本会全局切换。也就是node版本号切换后只要不手动更改就会一直保持当前版本号不变。 但博主最近换了苹果系统后,发现苹果系统不能全局更改node版本。我在 vscode中使用nvm use x.x.x之后&…

Django(21):使用Celery任务框架

目录 Celery介绍Celery安装Celery使用项目文件和配置启动Celery编写任务调用异步任务查看任务执行状态及结果 设置定时和周期性任务配置文件添加任务Django Admin添加周期性任务启动任务调度器beat Flower监控任务执行状态Celery高级用法与注意事项给任务设置最大重试次数不同任…

东郊到家app小程序公众号软件开发预约同城服务系统成品源码部署

东郊到家app系统开发,东郊到家软件定制开发,东郊到家小程序APP开发,东郊到家源码定制开发,东郊到家模式系统定制开发 一、上门软件介绍 1、上门app是一家以推拿为主项,个人定制型的o2o平台,上门app平台提…