LSTM参数说明以及网络架构图
PS:时间仓促,有空补充内容~
LSTM从零开始实现
"""
遗忘门:相当于一个橡皮擦,决定保留昨天的哪些信息
输入门:相当于一个铅笔,再次根据昨天的记忆和今天的输入决定保留哪些信息
输出门:用于控制记忆细胞更新时所使用的输入信息
"""
import torch
from torch import nn, normal
from d2l import torch as d2l
batch_size,num_steps = 32,35
train_iter,vocab = d2l.load_data_time_machine(batch_size,num_steps)
# 初始化模型参数
def get_lstm_params(vocab_size, num_hiddens, device):
num_inputs = num_outputs = vocab_size
def normal(shape):
return torch.randn(size=shape, device=device)*0.01
def three():
return (normal((num_inputs, num_hiddens)),
normal((num_hiddens, num_hiddens)),
torch.zeros(num_hiddens, device=device))
W_xi, W_hi, b_i = three() # 输入门参数
W_xf, W_hf, b_f = three() # 遗忘门参数
W_xo, W_ho, b_o = three() # 输出门参数
W_xc, W_hc, b_c = three() # 候选记忆元参数
# 输出层参数
W_hq = normal((num_hiddens, num_outputs))
b_q = torch.zeros(num_outputs, device=device)
# 附加梯度
params = [W_xi, W_hi, b_i, W_xf, W_hf, b_f, W_xo, W_ho, b_o, W_xc, W_hc,
b_c, W_hq, b_q]
for param in params:
param.requires_grad_(True)
return params
# 定义模型
"""在初始化函数中, 长短期记忆网络的隐状态需要返回一个额外的记忆元,
单元的值为0,形状为(批量大小,隐藏单元数)。 因此,我们得到以下的状态初始化。"""
def init_lstm_state(batch_size,num_hiddens,device):
return (torch.zeros((batch_size,num_hiddens),device=device),
torch.zeros((batch_size,num_hiddens),device=device))
def lstm(inputs,state,params):
[W_xi,W_hi,b_i,W_xf,W_hf,b_f,W_xo,W_ho,b_o,W_xc,W_hc,b_c,W_hq,b_q] = params
(H,C) = state
outputs = []
for X in inputs:
I = torch.sigmoid((X@W_xi) + (H@W_hi) + b_i)
F = torch.sigmoid((X@W_xf) + (H@W_hf) + b_f)
O = torch.sigmoid((X@W_xo) + (H@W_ho) + b_o)
C_tilda = torch.tanh((X@W_xc) + (H@W_hc) + b_c)
C = F * C + I * C_tilda
H = O * torch.tanh(C)
Y = (H @ W_hq) + b_q
outputs.append(Y)
return torch.cat(outputs,dim=0),(H,C)
# 训练和预测
vocab_size, num_hiddens, device = len(vocab), 256, d2l.try_gpu()
num_epochs, lr = 500, 1
model = d2l.RNNModelScratch(len(vocab), num_hiddens, device, get_lstm_params,
init_lstm_state, lstm)
d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device)
LSTM的简洁实现
import torch
from torch import nn, normal
from d2l import torch as d2l
batch_size,num_steps = 32,35
train_iter,vocab = d2l.load_data_time_machine(batch_size,num_steps)
# 训练和预测
vocab_size, num_hiddens, device = len(vocab), 256, d2l.try_gpu()
num_epochs, lr = 500, 1
num_inputs = vocab_size
lstm_layer = nn.LSTM(num_inputs, num_hiddens)
model = d2l.RNNModel(lstm_layer, len(vocab))
model = model.to(device)
d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device)