C# Onnx Yolov8 Detect 水果识别

news2025/1/23 17:49:32

效果

项目

 代码

using Microsoft.ML.OnnxRuntime;
using Microsoft.ML.OnnxRuntime.Tensors;
using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using static System.Net.Mime.MediaTypeNames;

namespace Onnx_Yolov8_Demo
{
    public partial class Form1 : Form
    {
        public Form1()
        {
            InitializeComponent();
        }

        string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
        string image_path = "";
        string startupPath;
        string classer_path;
        DateTime dt1 = DateTime.Now;
        DateTime dt2 = DateTime.Now;
        string model_path;
        Mat image;
        DetectionResult result_pro;
        Mat result_image;

        SessionOptions options;
        InferenceSession onnx_session;
        Tensor<float> input_tensor;
        List<NamedOnnxValue> input_ontainer;
        IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;
        DisposableNamedOnnxValue[] results_onnxvalue;

        Tensor<float> result_tensors;

        float[] result_array = new float[8400 * 19];
        float[] factors = new float[2];

        Result result;
        StringBuilder sb = new StringBuilder();
        private void button1_Click(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = fileFilter;
            if (ofd.ShowDialog() != DialogResult.OK) return;
            pictureBox1.Image = null;
            image_path = ofd.FileName;
            pictureBox1.Image = new Bitmap(image_path);
            textBox1.Text = "";
            image = new Mat(image_path);
            pictureBox2.Image = null;
        }

        private void button2_Click(object sender, EventArgs e)
        {
            if (image_path == "")
            {
                return;
            }

            // 配置图片数据
            image = new Mat(image_path);
            int max_image_length = image.Cols > image.Rows ? image.Cols : image.Rows;
            Mat max_image = Mat.Zeros(new OpenCvSharp.Size(max_image_length, max_image_length), MatType.CV_8UC3);
            Rect roi = new Rect(0, 0, image.Cols, image.Rows);
            image.CopyTo(new Mat(max_image, roi));

           
            factors[0] = factors[1] = (float)(max_image_length / 640.0);

            // 将图片转为RGB通道
            Mat image_rgb = new Mat();
            Cv2.CvtColor(max_image, image_rgb, ColorConversionCodes.BGR2RGB);
            Mat resize_image = new Mat();
            Cv2.Resize(image_rgb, resize_image, new OpenCvSharp.Size(640, 640));

            // 输入Tensor
            // input_tensor = new DenseTensor<float>(new[] { 1, 3, 640, 640 });
            for (int y = 0; y < resize_image.Height; y++)
            {
                for (int x = 0; x < resize_image.Width; x++)
                {
                    input_tensor[0, 0, y, x] = resize_image.At<Vec3b>(y, x)[0] / 255f;
                    input_tensor[0, 1, y, x] = resize_image.At<Vec3b>(y, x)[1] / 255f;
                    input_tensor[0, 2, y, x] = resize_image.At<Vec3b>(y, x)[2] / 255f;
                }
            }

            //将 input_tensor 放入一个输入参数的容器,并指定名称
            input_ontainer.Add(NamedOnnxValue.CreateFromTensor("images", input_tensor));

            dt1 = DateTime.Now;
            //运行 Inference 并获取结果
            result_infer = onnx_session.Run(input_ontainer);

            dt2 = DateTime.Now;

            // 将输出结果转为DisposableNamedOnnxValue数组
            results_onnxvalue = result_infer.ToArray();

            // 读取第一个节点输出并转为Tensor数据
            result_tensors = results_onnxvalue[0].AsTensor<float>();

            result_array = result_tensors.ToArray();

            resize_image.Dispose();
            image_rgb.Dispose();

            result_pro = new DetectionResult(classer_path, factors);
            result = result_pro.process_result(result_array);
            result_image = result_pro.draw_result(result, image.Clone());

            if (!result_image.Empty())
            {
                pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());
                sb.Clear();
                sb.AppendLine("推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms");
                sb.AppendLine("------------------------------");
                for (int i = 0; i < result.length; i++)
                {
                    sb.AppendLine(string.Format("{0}:{1},({2},{3},{4},{5})"
                        , result.classes[i]
                        , result.scores[i].ToString("0.00")
                        , result.rects[i].TopLeft.X
                        , result.rects[i].TopLeft.Y
                        , result.rects[i].BottomRight.X
                        , result.rects[i].BottomRight.Y
                        ));
                }
                textBox1.Text = sb.ToString();
            }
            else
            {
                textBox1.Text = "无信息";
            }

        }

        private void Form1_Load(object sender, EventArgs e)
        {
            startupPath = System.Windows.Forms.Application.StartupPath;
            model_path = startupPath + "\\fruits.onnx";
            classer_path = startupPath + "\\lable.txt";

            // 创建输出会话,用于输出模型读取信息
            options = new SessionOptions();
            options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;
            // 设置为CPU上运行
            options.AppendExecutionProvider_CPU(0);

            // 创建推理模型类,读取本地模型文件
            onnx_session = new InferenceSession(model_path, options);//model_path 为onnx模型文件的路径

            // 输入Tensor
            input_tensor = new DenseTensor<float>(new[] { 1, 3, 640, 640 });

            // 创建输入容器
            input_ontainer = new List<NamedOnnxValue>();

        }
    }
}

lable.txt

cucumber
apple
kiwi
banana
orange
coconut
peach
cherry
pear
pomegranate
pineapple
watermelon
melon
grape
strawberry

数据集

数据集下载 

Demo下载 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1033530.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Chrome浏览器删除网站cookies的解决方案

大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的…

iOS——ViewController的生命周期

ViewController ViewController的生命周期是指在应用程序运行过程中&#xff0c;ViewController实例从创建到销毁的整个过程。在这个过程中&#xff0c;ViewController会经历一系列的生命周期方法&#xff0c;这些方法可以帮助开发者管理ViewController及其相关的视图和逻辑。…

20230919在WIN10下使用python3将PDF文档转为DOCX格式的WORD文档

20230919在WIN10下使用python3将PDF文档转为DOCX格式的WORD文档 2023/9/19 11:20 python pdf word https://blog.csdn.net/u013185349/article/details/130059657 Python实现PDF转Word文档 AcceptedLin 已于 2023-04-10 14:45:17 修改 1243 收藏 1 文章标签&#xff1a; pd…

软件系统的测试方法

软件系统测试是确保软件质量和功能的关键步骤&#xff0c;选择适当的测试方法取决于项目的性质、需求和资源可用性。通常&#xff0c;综合运用多种测试方法可以更全面地评估软件系统的质量和性能。下面列举了一些常见的软件系统测试方法&#xff0c;希望对大家有所帮助。北京木…

通过http发送post请求的三种Content-Type分析

通过okhttp向服务端发起post网络请求&#xff0c;可以通过Content-Type设置发送请求数据的格式。 常用到的三种&#xff1a; 1&#xff09;application/x-www-form-urlencoded; charsetutf-8 2&#xff09;application/json; charsetutf-8 3&#xff09;multipart/form-dat…

数据融合的并行计算

1、 数据融合的算法 数据融合的算法当中&#xff0c;需要对每一个格点i进行逐个计算&#xff0c;公式如下 2、出现的问题 但是随着背景场的空间分辨率的提高&#xff0c;格点数急剧增加。如空间分辨率为0.01的话&#xff0c;那么15✖15的空间范围内就有1500✖1500个格点。那…

003 linux 自动化构建工具-make/makefile

前言 本文将会向您介绍make/makefile的原理与操作 引入 首先先向您介绍linux的编译器gcc的编译过程&#xff1a; 预处理 预处理功能主要包括宏定义,文件包含,条件编译,去注释等。 预处理指令是以#号开头的代码行。 实例: gcc –E hello.c –o hello.i 选项“-E”,该选项的作…

iOS线上闪退问题解决方案

iOS线上闪退问题的收集工具是关键&#xff0c;它们可以帮助你及时发现和解决应用程序中的崩溃问题。以下是一些常用的iOS线上闪退问题收集工具及其使用方法&#xff0c;希望对大家有所帮助。北京木奇移动技术有限公司&#xff0c;专业的软件外包开发公司&#xff0c;欢迎交流合…

POJ 3977 Subset 折半枚举+二分搜素+双指针

一、题目大意 我们有N&#xff08;N<35&#xff09;个元素&#xff0c;从中选取一个子集&#xff0c;使得它的元素求和的绝对值最小&#xff0c;如果有多个可行解&#xff0c;选择元素最小的。 输出最优子集的元素总和绝对值&#xff0c;和最优子集元素的数量。 二、解题…

Google拟放弃博通自行研发AI芯片 | 百能云芯

谷歌计划自行研发人工智能&#xff08;AI&#xff09;芯片&#xff0c;考虑将博通&#xff08;Broadcom&#xff09;从其供应商名单中剔除&#xff0c;但谷歌强调双方的合作关系不会受到影响。 根据美国网络媒体《The Information》的报道&#xff0c;谷歌高层正在讨论可能在20…

窜货采买第三方怎么选择

窜货溯源服务听起来并不难&#xff0c;无非就是买货&#xff0c;但是否能买到货&#xff0c;同时在买到之后能否顺利完成溯源工作&#xff0c;也是非常有学问的&#xff0c;很多品牌会选择第三方服务商进行采买合作&#xff0c;这样可以规避品牌自己操作时的不合规性&#xff0…

Exploit-DB 使用小结

Exploit-DB &#xff08;网址&#xff1a;https://www.exploit-db.com&#xff09; 是一个漏洞库网站 &#xff0c;存储了大量的漏洞利用程序&#xff0c;可以帮助安全研究者和渗透测试工程师更好的进行安全测试工作&#xff0c;目前是世界上公开收集漏洞最全的数据库&#xff…

CNN(八):Inception V1算法实战与解析

&#x1f368; 本文为&#x1f517;365天深度学习训练营 中的学习记录博客 &#x1f356; 原作者&#xff1a;K同学啊|接辅导、项目定制 1 Inception V1 Inception v1论文 1.1 理论知识 GoogLeNet首次出现在2014年ILSVRC比赛中获得冠军。这次的版本通常称其为Inception V1。…

QtCreator报大量未知标识符错误的解决方法

目录 前言背景介绍问题1问题1解决方法问题2问题2 解决方法总结 前言 本文记录了在使用QtCreator开发时遇到的一个错误&#xff0c;导致编译时出现大量的“未知标识符”&#xff0c;经过一番努力最终解决了这个问题&#xff0c;特在此记录。 背景介绍 Qt项目在麒麟V10 系统下…

Linux中创建用户要自己设置密码

因为不知道Linux默认设置的密码&#xff0c;没办法接下来愉快的使用。如下&#xff1a; 而想要新建Linux用户密码&#xff0c;请您执行以下步骤: . 1.打开终端并以root身份登录; 2.输入命令“useradd username",其中username为您新建的用户名; 3.使用命令“passwd usernam…

《向量数据库指南》——向量搜索库Faiss 迁移到 Milvus 2.x

Faiss -> Milvus 2.x 1. Faiss 数据准备 前提条件是用户已经准备好了自己的 faiss 数据文件。(为了能快速体验,在项目源码的 testfiles 目录下放置了 faiss 测试数据方便用户体验: faiss_ivf_flat.index. 2. 编译打包 这部分同上,不再展开介绍。 3. 配置 migration.ymal…

【数据结构】顺序查找,折半查找,分块查找的知识点总结及相应的代码实现

目录 1、顺序查找 定义及步骤 代码实现 2、折半查找 定义及步骤 代码实现 折半查找判定树 3、分块查找 定义及步骤 1、顺序查找 定义及步骤 顺序查找的定义&#xff1a;从数据集合的起始位置开始&#xff0c;逐一比较每个数据元素&#xff0c;直到找到所要查找…

百度SEO优化不稳定的原因分析(提升网站排名的稳定性)

百度SEO优化不稳定介绍蘑菇号-www.mooogu.cn SEO不稳定是指网站在搜索引擎中的排名不稳定&#xff0c;随着时间的推移会发生变化。这种情况可能会出现在网站页面结构、内容质量、外链质量等方面存在缺陷或不合理之处。因此&#xff0c;优化SEO非常重要&#xff0c;可以提高网站…

4+机器学习+实验验证

今天给同学们分享一篇4机器学习实验验证的生信文章“Identification and Analysis of Neutrophil Extracellular Trap-Related Genes in Osteoarthritis by Bioinformatics and Experimental Verification”&#xff0c;这篇文章于2023年8月31日发表在 J Inflamm Res 期刊上&am…

两个数使用JavaScript比较大小;JavaScript知识点

一、两个数使用JavaScript比较大小代码 <!DOCTYPE html> <html><head><meta charset"utf-8"><title></title></head><body><script type"text/javascript">var aprompt("请输入第一个数:"…