pcl--第十节 点云曲面重建

news2024/11/18 22:35:02

曲面重建技术在逆向工程、数据可视化、机器视觉、虚拟现实、医疗技术等领域中得到了广泛的应用 。 例如,在汽车、航空等工业领域中,复杂外形产品的设计仍需要根据手工模型,采用逆向工程的手段建立产品的数字化模型,根据测量数据建立人体以及骨骼和器官的计算机模型,在医学、定制生产等方面都有重要意义 。

除了上述传统的行业,随着新兴的廉价 RGBD 获取设备在数字娱乐行业的病毒式扩展,使得更多人开始使用点云来处理对象并进行工程应用 。 根据重建曲面和数据点云之间的关系,可将曲面重建分为两大类:插值法和逼近法。前者得到的重建曲面完全通过原始数据点,而后者则是用分片线性曲面或其他形式的曲面来逼近原始数据点,从而使得得到的重建曲面是原始点集的一个逼近曲面。

关联知识:

Search、KdTree、Octree

基于多项式重构的平滑和法线估计¶

本教程说明如何使用移动最小二乘(MLS)曲面重构方法来平滑和重采样噪声数据。

使用统计分析很难消除某些数据不规则性(由较小的距离测量误差引起)。要创建完整的模型,必须考虑光滑的表面以及数据中的遮挡。在无法获取其他扫描的情况下,一种解决方案是使用重采样算法,该算法尝试通过周围数据点之间的高阶多项式插值来重新创建表面的缺失部分。通过执行重采样,可以纠正这些小的错误,并且可以将多个扫描记录在一起执行平滑操作合并成同一个点云。

_images/resampling_1.jpg

在上图的左侧,我们在包含两个配准点云的数据集中看到了配准后的效果及表面法线估计。由于对齐错误,所产生的法线有噪声。在右侧,使用移动最小二乘法对表面法线估计进行平滑处理后,在同一数据集中看到了该效果。绘制每个点的曲率,作为重新采样前后特征值关系的度量,我们得到:

_images/resampling_2.jpg

 

#include <pcl/point_types.h>
#include <pcl/io/pcd_io.h>
//#include <pcl/kdtree/kdtree_flann.h>
#include <pcl/surface/mls.h>
#include <pcl/search/kdtree.h>
int
main ()
{
  // Load input file into a PointCloud<T> with an appropriate type
  pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ> ());
  // Load bun0.pcd -- should be available with the PCL archive in test 
  pcl::io::loadPCDFile ("table_scene_lms400_downsampled.pcd", *cloud);

  // Create a KD-Tree
  //pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZ>);
  pcl::search::KdTree<pcl::PointXYZ>::Ptr tree(new pcl::search::KdTree<pcl::PointXYZ>()); // kd树对象

  // Output has the PointNormal type in order to store the normals calculated by MLS
  pcl::PointCloud<pcl::PointNormal> mls_points;

  // Init object (second point type is for the normals, even if unused)
  pcl::MovingLeastSquares<pcl::PointXYZ, pcl::PointNormal> mls;
 
  mls.setComputeNormals (true);

  // Set parameters
  mls.setInputCloud (cloud);
  mls.setPolynomialOrder (2);
  mls.setSearchMethod (tree);
  mls.setSearchRadius (0.03);

  // Reconstruct
  mls.process (mls_points);

  // Save output
  pcl::io::savePCDFile ("table_scene_lms400_downsampled-mls.pcd", mls_points);
}

右边是重建后,会发现比左边更平整

在平面模型上提取凸(凹)多边形

学习如何为平面模型上的点集提取其对应的凹多边形的例子,该例首先从点云中提取平面模型,再通过该估计的平面模型系数从滤波后的点云投影一组点集形成点云,最后为投影后的点云计算其对应的二维凸(凹)多边形。

#include <pcl/ModelCoefficients.h>
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/sample_consensus/method_types.h>
#include <pcl/sample_consensus/model_types.h>
#include <pcl/filters/passthrough.h>
#include <pcl/filters/project_inliers.h>
#include <pcl/segmentation/sac_segmentation.h>
#include <pcl/surface/convex_hull.h>

int
 main ()
{
  pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>), cloud_filtered (new pcl::PointCloud<pcl::PointXYZ>), cloud_projected (new pcl::PointCloud<pcl::PointXYZ>);
  pcl::PCDReader reader;
  reader.read ("table_scene_mug_stereo_textured.pcd", *cloud);

  // Build a filter to remove spurious NaNs and scene background
  pcl::PassThrough<pcl::PointXYZ> pass;
  pass.setInputCloud (cloud);
  pass.setFilterFieldName ("z");
  pass.setFilterLimits (0, 1.1);
  pass.filter (*cloud_filtered);
  std::cerr << "PointCloud after filtering has: " << cloud_filtered->size () << " data points." << std::endl;

  pcl::ModelCoefficients::Ptr coefficients (new pcl::ModelCoefficients);
  pcl::PointIndices::Ptr inliers (new pcl::PointIndices);
  // Create the segmentation object
  pcl::SACSegmentation<pcl::PointXYZ> seg;
  // Optional
  seg.setOptimizeCoefficients (true);
  // Mandatory
  seg.setModelType (pcl::SACMODEL_PLANE);
  seg.setMethodType (pcl::SAC_RANSAC);
  seg.setDistanceThreshold (0.01);

  seg.setInputCloud (cloud_filtered);
  seg.segment (*inliers, *coefficients);

  // Project the model inliers
  pcl::ProjectInliers<pcl::PointXYZ> proj;
  proj.setModelType (pcl::SACMODEL_PLANE);
  proj.setInputCloud (cloud_filtered);
  proj.setIndices (inliers);
  proj.setModelCoefficients (coefficients);
  proj.filter (*cloud_projected);

  // Create a Convex Hull representation of the projected inliers
  pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_hull (new pcl::PointCloud<pcl::PointXYZ>);


  pcl::ConvexHull<pcl::PointXYZ> chull;
  chull.setInputCloud (cloud_projected);
  chull.reconstruct (*cloud_hull);

 



  std::cerr << "Convex hull has: " << cloud_hull->size () << " data points." << std::endl;

  pcl::PCDWriter writer;
  writer.write ("table_scene_mug_stereo_textured_hull.pcd", *cloud_hull, false);

  return (0);
}

#include <pcl/ModelCoefficients.h>
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/sample_consensus/method_types.h>
#include <pcl/sample_consensus/model_types.h>
#include <pcl/filters/passthrough.h>
#include <pcl/filters/project_inliers.h>
#include <pcl/segmentation/sac_segmentation.h>
#include <pcl/surface/concave_hull.h>

int
main ()
{
  pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>), 
                                      cloud_filtered (new pcl::PointCloud<pcl::PointXYZ>), 
                                      cloud_projected (new pcl::PointCloud<pcl::PointXYZ>);
  pcl::PCDReader reader;

  reader.read ("table_scene_mug_stereo_textured.pcd", *cloud);
  // Build a filter to remove spurious NaNs and scene background
  pcl::PassThrough<pcl::PointXYZ> pass;
  pass.setInputCloud (cloud);
  pass.setFilterFieldName ("z");
  pass.setFilterLimits (0, 1.1);
  pass.filter (*cloud_filtered);
  std::cerr << "PointCloud after filtering has: "
            << cloud_filtered->size () << " data points." << std::endl;

  pcl::ModelCoefficients::Ptr coefficients (new pcl::ModelCoefficients);
  pcl::PointIndices::Ptr inliers (new pcl::PointIndices);
  // Create the segmentation object
  pcl::SACSegmentation<pcl::PointXYZ> seg;
  // Optional
  seg.setOptimizeCoefficients (true);
  // Mandatory
  seg.setModelType (pcl::SACMODEL_PLANE);
  seg.setMethodType (pcl::SAC_RANSAC);
  seg.setDistanceThreshold (0.01);

  seg.setInputCloud (cloud_filtered);
  seg.segment (*inliers, *coefficients);
  std::cerr << "PointCloud after segmentation has: "
            << inliers->indices.size () << " inliers." << std::endl;

  // Project the model inliers
  pcl::ProjectInliers<pcl::PointXYZ> proj;
  proj.setModelType (pcl::SACMODEL_PLANE);
  // proj.setIndices (inliers);
  proj.setInputCloud (cloud_filtered);
  proj.setModelCoefficients (coefficients);
  proj.filter (*cloud_projected);
  std::cerr << "PointCloud after projection has: "
            << cloud_projected->size () << " data points." << std::endl;

  // Create a Concave Hull representation of the projected inliers
  pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_hull (new pcl::PointCloud<pcl::PointXYZ>);
  pcl::ConcaveHull<pcl::PointXYZ> chull;
  chull.setInputCloud (cloud_projected);
  chull.setAlpha (0.1);
  chull.reconstruct (*cloud_hull);

  std::cerr << "Concave hull has: " << cloud_hull->size ()
            << " data points." << std::endl;

  pcl::PCDWriter writer;
  writer.write ("table_scene_mug_stereo_textured_hull.pcd", *cloud_hull, false);

  return (0);
}

 无序点云的快速三角化

本小节介绍了怎样使用贪婪投影三角化算法对有向点云进行三角化,具体方法是先将有向点云投影到某一局部二维坐标平面内,再在坐标平面内进行平面内的三角化,再根据平面内三位点的拓扑连接关系获得一个三角网格曲面模型。贪婪投影三角化算法原理是处理一系列可以使网格“生长扩大”的点(边缘点)延伸这些点直到所有符合几何正确性和拓扑正确性的点都被连上。该算法的优点是可以处理来自一个或者多个扫描仪扫描得到并且有多个连接处的散乱点云。但该算法也有一定的局限性,它更适用于采样点云来自于表面连续光滑的曲面且点云密度
变化比较均匀的情况。该算法的三角化过程是局部进行的,首先沿着一点的法线将该点投影到局部二维坐标平面内并连接其他悬空点,然后再进行下一点。所以这里设置如下参数:

  1. 函数 SetMaximumNearestNeighbors(unsigned)和 SetMu(double),这两个函数的作用是控制搜索邻域大小。前者定义了可搜索的邻域个数,后者规定了被样本点搜索其邻近点的最远距离(是为了适应点云密度的变化),特征值一般是 50~100和2.5~3(或者15每栅格)。
  2. 函数SetSearchRadius(double),该函数设置了三角化后得到的每个三角形的最大可能边长。
  3. 函数SetMinimumAngle(double)和 SetMaximumAngle(double),这两个函数是三角化后每个三角形的最大角和最小角。两者至少要符合一个,典型值分别是10和120°(弧度)。
  4. 函数 SetMaximumSurfaceAgle(double)和 SetNormalConsistency(bool),这两个函数是为了处理边缘或者角很尖锐以及一个表面的两边非常靠近的情况。为了处理这些特殊情况,函数SetMaximumSurfaceAgle(double)规定如果某点法线方向的偏离超过指定角度(注:大多数表面法线估计方法可以估计出连续变化的表面法线方向,即使在尖锐的边缘条件下),该点就不连接到样本点上。该角度是通过计算法向线段(忽略法线方向)之间的角度。函数SetNormalConsistency(bool)保证法线朝向,如果法线方向一致性标识没有设定,就不能保证估计出的法线都可以始终朝向一致。第一个函数特征值为45(弧度)第二个函数默认值为false。
#include <pcl/point_types.h>
#include <pcl/io/pcd_io.h>
#include <pcl/search/kdtree.h> // for KdTree
#include <pcl/features/normal_3d.h>
#include <pcl/surface/gp3.h>
#include <pcl/visualization/pcl_visualizer.h>
#include <pcl/surface/organized_fast_mesh.h>
int
main ()
{
  // Load input file into a PointCloud<T> with an appropriate type
  pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>);
  pcl::PCLPointCloud2 cloud_blob;
  pcl::io::loadPCDFile ("bunny.pcd", cloud_blob);
  pcl::fromPCLPointCloud2 (cloud_blob, *cloud);
  //* the data should be available in cloud

  // Normal estimation*
  pcl::NormalEstimation<pcl::PointXYZ, pcl::Normal> n;
  pcl::PointCloud<pcl::Normal>::Ptr normals (new pcl::PointCloud<pcl::Normal>);
  pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZ>);
  tree->setInputCloud (cloud);
  n.setInputCloud (cloud);
  n.setSearchMethod (tree);
  n.setKSearch (20);
  n.compute (*normals);
  //* normals should not contain the point normals + surface curvatures

  // Concatenate the XYZ and normal fields*
  pcl::PointCloud<pcl::PointNormal>::Ptr cloud_with_normals (new pcl::PointCloud<pcl::PointNormal>);
  pcl::concatenateFields (*cloud, *normals, *cloud_with_normals);
  //* cloud_with_normals = cloud + normals

  // Create search tree*
  pcl::search::KdTree<pcl::PointNormal>::Ptr tree2 (new pcl::search::KdTree<pcl::PointNormal>);
  tree2->setInputCloud (cloud_with_normals);

  // Initialize objects
  pcl::GreedyProjectionTriangulation<pcl::PointNormal> gp3;
  pcl::PolygonMesh triangles;

  // Set the maximum distance between connected points (maximum edge length)
  gp3.setSearchRadius (0.02);

  // Set typical values for the parameters
  gp3.setMu (2.5);
  gp3.setMaximumNearestNeighbors (100);
  gp3.setMaximumSurfaceAngle(M_PI/4); // 45 degrees
  gp3.setMinimumAngle(M_PI/18); // 10 degrees
  gp3.setMaximumAngle(2*M_PI/3); // 120 degrees
  gp3.setNormalConsistency(false);

  // Get result
  gp3.setInputCloud (cloud_with_normals);
  gp3.setSearchMethod (tree2);
  gp3.reconstruct (triangles);

  // Additional vertex information
  std::vector<int> parts = gp3.getPartIDs();
  std::vector<int> states = gp3.getPointStates();

  // Finish
  pcl::visualization::PCLVisualizer viewer("Triangulation");
  viewer.setBackgroundColor(0.0, 0.0, 0.0);
  viewer.addPointCloud<pcl::PointXYZ>(cloud, "input_cloud");
  viewer.addPolygonMesh(triangles, "triangles", 0);
  viewer.setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_COLOR, 1.0, 0.0, 0.0, "input_cloud");
  viewer.setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_COLOR, 0.0, 1.0, 0.0, "triangles");
  viewer.spin();

  return (0);
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1032352.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

[React] 自定义hooks设计模式

文章目录 1.自定义hooks设计1.1 自定义hooks1.2 设计一个自定义hooks1.3 自定义hooks的驱动条件1.4 自定义hooks的通用模式1.5 自定义hooks的条件限定 1.自定义hooks设计 react-hooks是react16.8以后&#xff0c;react新增的钩子API&#xff0c;目的是增加代码的可复用性&…

线性表应用(非递减合并、分解链表、删除线性表)

将两个非递减的有序链表合并为一个非递增的有序链表。要求结果链表仍使用原来两个链表的存储空间&#xff0c;不另外占用其它的存储空间。表中允许有重复的数据。 #include<iostream> using namespace std; typedef struct list {int data;list* next; }list,*linklist;…

Linux 系统移植(一)-- 系统组成

参考资料&#xff1a; linux系统移植篇&#xff08;一&#xff09;—— linux系统组成【野火Linux移植篇】1-uboot初识与编译/烧录步骤 文章目录 一、linux系统组成二、Uboot三、Linux内核四、设备树 本篇为Linux系统移植系列的第一篇文章&#xff0c;介绍了一个完整可运行的L…

2015年蓝桥杯省赛C/C++ A组 灾后重建题解(100分)

10. 灾后重建 Pear市一共有N&#xff08;<50000&#xff09;个居民点&#xff0c;居民点之间有M&#xff08;<200000&#xff09;条双向道路相连。这些居民点两两之间都可以通过双向道路到达。这种情况一直持续到最近&#xff0c;一次严重的地震毁坏了全部M条道路。 震后…

【10个OOM异常的场景以及对应的排查经验】

文章目录 1. 场景描述&#xff1a;内存泄漏2. 场景描述&#xff1a;过多线程3. 场景描述&#xff1a;大量数据查询4. 场景描述&#xff1a;大文件读取5. 场景描述&#xff1a;高并发访问6. 场景描述&#xff1a;大字符串操作7. 场景描述&#xff1a;大数据集合操作8. 场景描述&…

C语言-扫雷游戏的实现

&#x1f308;write in front&#x1f308; &#x1f9f8;大家好&#xff0c;我是Aileen&#x1f9f8;.希望你看完之后&#xff0c;能对你有所帮助&#xff0c;不足请指正&#xff01;共同学习交流. &#x1f194;本文由Aileen_0v0&#x1f9f8; 原创 CSDN首发&#x1f412; 如…

反射【Java】

概念&#xff1a;允许对成员变量&#xff0c;成员方法和构造方法的信息进行编程访问 获取class对象 Class.forName("全类名"); //全类名&#xff1a;包名类名 类名.class 对象.getClass(); //有一个名为Goods的类Class clazz1 Class.forName("com.ln1.Goo…

VR赋能红色教育,让爱国主义精神永放光彩

昨天的918防空警报长鸣&#xff0c;人们默哀&#xff0c;可见爱国主义精神长存。为了贯彻落实“把红色资源利用好、红色传统发扬好、红色基因传承好”的指示精神&#xff0c;许多红色景点开始引入VR全景展示技术&#xff0c;为游客提供全方位720度无死角的景区展示体验。 VR全…

【电源专题】什么是充电芯片的Shipping Mode(船运模式)

现在越来越多电子产品小型化,手持化,这样就需要电池来为产品供电。但电池供电造成的另一个难题就是产品的续航能力的强与弱。 如果想提升续航能力,有一种方法是提高电池容量。如果电池体积没有变化的情况下,可能使用了新型材料、高级技术来增加电池容量,但这势必会增加电池…

Webpack设置代码映射,可调试打包后的代码

当我们的代码打包过后再看源码就会变成下面这个样子&#xff1a; 这时候我们就调试不了我们的代码 解决方式&#xff1a; 在webpack.config.js中添加如下代码&#xff1a; module.exports {mode: "development", // 设置打包的模式&#xff1a;production生产模式…

2000-2021年上市公司劳动投资效率测算数据:劳动投资效率、冗余雇佣、雇佣不足(含原始数据和计算代码do文档)

2000-2021 年上市公司劳动投资效率测算数据&#xff1a;劳动投资效率、冗余雇佣、雇佣不足 &#xff08;含计算代码do文档&#xff09; 1、时间&#xff1a;2000-2021 年 2、范围&#xff1a;沪深A 股上市公司 3、指标&#xff1a;code、year、证券代码、货币资金、短期投资…

TexStudio报错 Class: No Found

\classdocument[preprint,review,fleqn,sort&compress,3p]{elsarticle}这里常见导入的类&#xff08;class&#xff09;文件有article.cls&#xff0c;elsarticle.cls&#xff0c;sn-jnl.cls等 一般来说这些文件都应该和我们的源文件document.tex在同一个目录下。如果不在…

Vue复选框批量删除示例

Vue复选框批量删除 通过使用v-model指令绑定单个复选框 例如<input type"checkbox" id"checkbox" v-model"checked"> 而本次我们要做的示例大致是这样的&#xff0c;首先可以增加内容&#xff0c;然后通过勾选来进行单独或者批量删除&…

chk文件怎么恢复?chk文件恢复软件哪个好?

电脑中的每个文件都有其不同的后缀名&#xff0c;如.txt、.png等等&#xff0c;那么你知道.chk后缀的文件是什么吗&#xff1f;下面我们就来一起了解一下吧。 chk文件的含义 chk文件是用户在使用磁盘碎片整理程序后所产生的丢失簇的恢复文件&#xff0c;磁盘中的原文件并没有丢…

0基础学three.js环境搭建(2)

这是0基础学three.js系列中的第二篇&#xff0c;在这篇里面我会带着大家把开发环境搭建起来&#xff0c;关于开发环境&#xff0c;方式很多&#xff0c;如果你没有基础&#xff0c;就跟着我的步骤一步一步来&#xff0c;保你不出错。 首先安装node环境&#xff0c;关于node是干…

操作系统、进程和线程

目录 一、操作系统 二、进程/任务&#xff08;Process/Task&#xff09; 1. 什么是进程/任务 2. 进程控制块抽象&#xff08;PCB Process control Block&#xff09; 3. CPU分配 —— 进程调度&#xff08;Process Scheduling&#xff09; 4. 内存分配 —— 内存管理&…

【Redis】第5讲 Redis的下载并安装

下载Redis中文网https://www.redis.net.cn/ 百度网盘下载&#xff1a; 百度网盘 请输入提取码百度网盘为您提供文件的网络备份、同步和分享服务。空间大、速度快、安全稳固&#xff0c;支持教育网加速&#xff0c;支持手机端。注册使用百度网盘即可享受免费存储空间https://p…

软件测试这些基本类型你知道吗?

【软件测试面试突击班】如何逼自己一周刷完软件测试八股文教程&#xff0c;刷完面试就稳了&#xff0c;你也可以当高薪软件测试工程师&#xff08;自动化测试&#xff09; 关于软件测试的类型&#xff0c;从不同角度来讲&#xff0c;可以分很多种&#xff0c;有时候甚至觉得软件…

深入理解Elasticsearch中的Match Phrase查询

文章目录 摘要Match Phrase查询的原理Match Phrase查询的用法Match Phrase查询的示例代码 Match Phrase查询的注意事项总结 摘要 Elasticsearch是一个功能强大的开源搜索引擎&#xff0c;它提供了丰富的查询功能。其中&#xff0c;Match Phrase查询是一种强大的查询类型&#…

1784_C语言实现常用的复数运算

全部学习汇总&#xff1a; GitHub - GreyZhang/c_basic: little bits of c. 这是最近学习的C语言数据结构的中的案例&#xff0c;但是没有给出具体的实现代码。根据自己的学习水平简单编写了一下&#xff0c;倒是能够计算与输出&#xff0c;但是不知道还有没有什么缺陷。 借用…