解码知识图谱:从核心概念到技术实战

news2024/12/24 3:27:01

目录

  • 1. 概述
    • 什么是知识图谱
    • 知识图谱与自然语言处理的关系
  • 2. 发展历程
    • 语义网络
    • 本体论
    • 大数据时代的知识图谱
    • 知识图谱与深度学习的融合
  • 3. 研究内容
    • 知识图谱的建模与表示
    • 知识抽取
    • 知识图谱的融合与对齐
    • 知识图谱的推理
    • 知识图谱的评估与验证
  • 4. 知识图谱表示与存储
    • RDF:一种知识图谱的表示方法
    • 存储:使用图数据库
    • 嵌入:使用深度学习进行知识表示
  • 5. 知识图谱获取与构建
    • 知识抽取
    • 知识融合
    • 知识校验
  • 6. 知识图谱推理
    • 逻辑推理
    • 知识嵌入推理
    • 路径推理
  • 总结

本文深入探索了知识图谱的核心概念、发展历程、研究内容以及其在表示、存储、获取、构建和推理方面的技术细节。结合Python和PyTorch示例代码,文章旨在为读者提供一个全面、深入且实用的知识图谱概览,帮助广大技术爱好者和研究者深化对此领域的认识。

关注TechLead,分享AI全维度知识。作者拥有10+年互联网服务架构、AI产品研发经验、团队管理经验,同济本复旦硕,复旦机器人智能实验室成员,阿里云认证的资深架构师,项目管理专业人士,上亿营收AI产品研发负责人。

file

1. 概述

知识图谱作为一种特殊的信息表示技术,其在近年来在各种应用领域中都有所体现,尤其在自然语言处理(NLP)中,它的重要性更是日益凸显。知识图谱能够高效、有组织地存储和管理大量的信息,而且能够用图的形式表示出这些信息之间的关系,使得信息更具有语境,更易于理解和应用。

什么是知识图谱

定义:知识图谱是一个结构化的信息库,其中的信息以图的形式组织,每个节点表示一个实体,每条边表示两个实体之间的关系。

例子:考虑一种场景,我们有一个音乐知识图谱。其中的节点可能包括“披头士乐队”、“摇滚音乐”和“1960s”,而边则可能表示“披头士乐队”是“摇滚音乐”的代表,以及“披头士乐队”在“1960s”非常受欢迎。

知识图谱与自然语言处理的关系

定义:在自然语言处理中,知识图谱被用作一种工具,帮助机器更好地理解和处理自然语言。通过知识图谱,机器可以理解文本中的实体及其关系,从而做出更加准确的决策或生成更为准确的回复。

例子:考虑一个问答系统。当用户询问“披头士乐队是哪一种音乐风格的代表?”时,系统可以通过查询知识图谱,得到“摇滚音乐”作为答案。这是因为知识图谱中已经存储了“披头士乐队”和“摇滚音乐”的关系。

总的来说,知识图谱为自然语言处理提供了一个结构化的信息源,能够大大提高其性能和准确性。而随着更多的研究和应用,我们可以期待知识图谱在自然语言处理中的作用将会越来越重要。


2. 发展历程

file
知识图谱这个概念并不是新鲜事物,但近些年由于技术进步和大数据的兴起,它得到了前所未有的关注和发展。从早期的语义网络和本体论到现在的大规模商业应用,知识图谱的发展脚步始终未停。

语义网络

定义:语义网络起源于20世纪60年代,是一种图形表示知识的方法,其中的节点代表概念,边表示概念之间的关系。

例子:考虑一个关于动物的简单语义网络。其中的节点包括“鸟”和“企鹅”,边表示“企鹅”是“鸟”的一种。但与此同时,可能还有另一条边表示“企鹅”不能飞。

本体论

定义:本体论在计算机科学中是一种对特定领域知识进行形式化描述的方法,它不仅描述了实体及其之间的关系,还包括了关于这些实体和关系的规则。

例子:在医学领域,本体论可以用来描述各种疾病、症状和治疗方法。例如,它可能会有一个规则表示:“如果一个人有症状A、B和C,则他很可能患有疾病X。”

大数据时代的知识图谱

定义:随着互联网的普及和大数据技术的进步,知识图谱开始被用于更为复杂的场景,如搜索引擎、智能助手和推荐系统。

例子:谷歌的“Knowledge Graph”是一个著名的应用,它帮助搜索引擎理解用户的查询,并提供相关的、结构化的信息。例如,当你搜索“阿尔伯特·爱因斯坦”时,你不仅会得到关于他的Wikipedia链接,还会看到他的生平、成就、相关人物等结构化信息。

知识图谱与深度学习的融合

定义:近年来,知识图谱和深度学习技术的结合已成为研究的热点,其中知识图谱为深度学习模型提供结构化的背景知识。

例子:在药物发现领域,知识图谱可以描述化合物、疾病和蛋白质等实体以及它们之间的关系。结合深度学习,研究者可以预测新的、未知的药物和疾病之间的关系,从而加速药物研发过程。

总的来说,知识图谱的发展历程反映了技术和应用的不断进步,从早期的理论研究到现在的商业应用,它始终处于知识表示和管理的前沿。


3. 研究内容

随着知识图谱领域的快速发展,其研究内容也变得日益丰富和多样。以下列出了一些核心的研究方向和相关的概念定义。

知识图谱的建模与表示

定义:知识图谱的建模与表示关注如何有效地组织、定义和表达知识中的实体和关系,以便于计算机处理和理解。

例子:Resource Description Framework (RDF) 是一种知识图谱的表示标准,它使用三元组(主体,谓词,宾体)来表达实体之间的关系,如:(巴黎, 是, 法国的首都)。

知识抽取

定义:知识抽取是从非结构化或半结构化数据源(如文本、图像或音频)中自动提取有价值的知识信息,并加入到知识图谱中。

例子:从新闻文章中自动识别并抽取出主要人物、事件和地点,然后将这些信息加入到现有的知识图谱中。

知识图谱的融合与对齐

定义:当面临多个来源或领域的知识图谱时,知识图谱的融合与对齐关注如何整合这些知识,确保其一致性和完整性。

例子:两个关于医学的知识图谱可能有部分重叠的内容,但在疾病的命名或分类上存在差异。通过对齐这两个图谱,可以生成一个更加完整和准确的医学知识库。

知识图谱的推理

定义:利用知识图谱中已有的知识进行逻辑推理,从而得到新的、隐含的知识信息。

例子:如果知识图谱中表示“A是B的父亲”和“B是C的父亲”,通过推理,我们可以得出“A是C的祖父”。

知识图谱的评估与验证

定义:为了确保知识图谱的质量和准确性,需要对其进行评估和验证,检查其内容是否准确、完整和一致。

例子:在加入新的知识到图谱中后,系统可能会自动比对已有的知识库,检测是否存在冲突或矛盾的信息。

总的来说,知识图谱研究的内容涵盖了从知识表示到知识应用的各个方面,其深度和广度都在不断扩展,为未来的技术进步和应用奠定了坚实的基础。


4. 知识图谱表示与存储

知识图谱的表示和存储是确保其高效使用的关键,因为这决定了如何查询、更新和扩展知识。下面我们深入探讨知识图谱的表示和存储技术。

RDF:一种知识图谱的表示方法

定义:Resource Description Framework (RDF) 是一种标准的知识图谱表示方法,采用三元组的形式来描述知识中的实体和关系。

例子
一个RDF三元组可以表示为:

(巴黎, 是, 法国的首都)

Python代码

# 一个简单的RDF三元组表示
triplet = ('巴黎', '是', '法国的首都')
print(triplet)

存储:使用图数据库

定义:图数据库是专为存储和查询图形结构的数据而设计的数据库。知识图谱由于其天然的图结构特性,与图数据库的存储和查询方式非常匹配。

例子:Neo4j 是一个流行的图数据库,可以用于存储和查询知识图谱。

Python代码:(这里我们使用py2neo库,这是Neo4j的一个Python客户端)

from py2neo import Graph, Node, Relationship

# 连接到Neo4j数据库
graph = Graph("http://localhost:7474", username="neo4j", password="password")

# 创建节点
paris = Node("City", name="巴黎")
france = Node("Country", name="法国")

# 创建关系
capital_relation = Relationship(paris, "是", france, description="法国的首都")

# 将节点和关系添加到图数据库中
graph.create(capital_relation)

嵌入:使用深度学习进行知识表示

定义:嵌入是将知识图谱中的实体和关系表示为低维向量,这种表示方法利用深度学习模型,如TransE,对知识进行编码。

例子:将"巴黎"和"是"这两个实体嵌入到一个维度为10的向量空间中。

PyTorch代码

import torch
import torch.nn as nn

class EmbeddingModel(nn.Module):
    def __init__(self, vocab_size, embedding_dim):
        super(EmbeddingModel, self).__init__()
        self.embeddings = nn.Embedding(vocab_size, embedding_dim)

    def forward(self, input_ids):
        return self.embeddings(input_ids)

# 假设我们的词汇表大小为1000,嵌入维度为10
model = EmbeddingModel(1000, 10)

# 获取"巴黎"和"是"的嵌入向量
# 这里我们仅为示例,随机指定"巴黎"和"是"的id为5和10
paris_embedding = model(torch.tensor([5]))
is_embedding = model(torch.tensor([10]))

print(paris_embedding)
print(is_embedding)

总结:知识图谱的表示与存储是其核心技术之一,确保了知识的高效查询和更新。从传统的RDF表示到现代的深度学习嵌入方法,这一领域始终在不断发展和创新。


5. 知识图谱获取与构建

知识图谱的获取与构建是知识图谱研究的核心部分,关注如何从各种数据源中自动或半自动提取、整合知识,并形成结构化的知识图谱。

知识抽取

定义:知识抽取是从非结构化或半结构化数据中自动识别和提取实体、关系和事件的过程。

例子:从一篇介绍史蒂夫·乔布斯的文章中抽取“史蒂夫·乔布斯是Apple的创始人”这一信息。

Python代码:(这里使用Spacy库进行简单的命名实体识别)

import spacy

# 加载模型
nlp = spacy.load("en_core_web_sm")

text = "Steve Jobs was the co-founder of Apple."
doc = nlp(text)

# 抽取实体
for ent in doc.ents:
    print(ent.text, ent.label_)

知识融合

定义:知识融合是整合来自多个知识源的知识,消除冲突和冗余,形成统一、一致的知识图谱。

例子:从两个数据库中分别获取“史蒂夫·乔布斯,Apple创始人”和“乔布斯,苹果公司联合创始人”,并整合为“史蒂夫·乔布斯是Apple公司的联合创始人”。

Python代码:(简化的融合示例)

knowledge1 = {"name": "史蒂夫·乔布斯", "title": "Apple创始人"}
knowledge2 = {"name": "乔布斯", "title": "苹果公司联合创始人"}

def fuse_knowledge(k1, k2):
    fused_knowledge = {}
    fused_knowledge["name"] = k1["name"]  # 选择更全的名称
    # 合并title,简化为选择k2的title
    fused_knowledge["title"] = k2["title"]
    return fused_knowledge

result = fuse_knowledge(knowledge1, knowledge2)
print(result)

知识校验

定义:知识校验是检查知识图谱中的信息是否准确、一致和可靠,以确保其质量。

例子:验证“史蒂夫·乔布斯是Microsoft的创始人”是否正确。

Python代码:(假设我们有一个已验证的知识库来检查此信息)

validated_knowledge_base = {
    "史蒂夫·乔布斯": "Apple的创始人",
    "比尔·盖茨": "Microsoft的创始人"
}

def validate_knowledge(entity, claim):
    if entity in validated_knowledge_base:
        return validated_knowledge_base[entity] == claim
    return False

is_valid = validate_knowledge("史蒂夫·乔布斯", "Microsoft的创始人")
print(is_valid)  # 输出为False,因为此知识是错误的

知识图谱的获取与构建是一个复杂而持续的过程,涉及多个步骤和技术。上述代码仅为简化示例,真实的知识获取与构建会更为复杂,但基本思路是相似的。


6. 知识图谱推理

知识图谱推理是知识图谱的核心研究领域之一,涉及利用现有知识图谱中的实体和关系,推导和预测新的关系或属性。

逻辑推理

定义:逻辑推理使用形式化逻辑来推导知识图谱中的新关系或属性,通常基于预定义的规则或模式。

例子:给定以下知识:

  1. 所有人都是生物。
  2. Tom是一个人。

我们可以推断出:Tom是一个生物。

Python代码

knowledge_base = {
    "所有人": "生物",
    "Tom": "人"
}

def logic_inference(entity):
    if entity in knowledge_base:
        if knowledge_base[entity] == "人":
            return "生物"
        return knowledge_base[entity]
    return None

result = logic_inference("Tom")
print(result)  # 输出:生物

知识嵌入推理

定义:知识嵌入推理使用深度学习模型,如TransE或TransH,将知识图谱中的实体和关系映射到低维向量空间,并通过向量运算进行推理。

例子:给定知识"北京" - “是” -> “中国的首都”,我们可以推断出其他类似的关系,如"东京" - “是” -> “日本的首都”。

PyTorch代码

import torch
import torch.nn as nn
import torch.optim as optim

# 使用TransE模型的简化版本
class TransE(nn.Module):
    def __init__(self, entity_size, relation_size, embedding_dim):
        super(TransE, self).__init__()
        self.entity_embeddings = nn.Embedding(entity_size, embedding_dim)
        self.relation_embeddings = nn.Embedding(relation_size, embedding_dim)

    def forward(self, head, relation):
        head_embedding = self.entity_embeddings(head)
        relation_embedding = self.relation_embeddings(relation)
        return head_embedding + relation_embedding

# 假设我们有3个实体和1个关系
model = TransE(3, 1, 10)

# 训练模型... (这里略过训练过程)

# 推理
beijing_id, is_id, tokyo_id = 0, 0, 2
predicted_tail = model(beijing_id, is_id)
actual_tail = model.entity_embeddings(torch.tensor(tokyo_id))
# 计算相似性
similarity = torch.nn.functional.cosine_similarity(predicted_tail, actual_tail)
print(similarity)

路径推理

定义:路径推理是基于知识图谱中实体间的多跳关系来推导新的关系。

例子:如果知道"A是B的朋友"和"B是C的朋友",我们可以推断"A可能认识C"。

Python代码

relations = {
    "A": ["B"],
    "B": ["C"]
}

def path_inference(entity):
    friends = relations.get(entity, [])
    friends_of_friends = []
    for friend in friends:
        friends_of_friends.extend(relations.get(friend, []))
    return friends_of_friends

result = path_inference("A")
print(result)  # 输出:['C']

知识图谱推理是一个富有挑战性的领域,因为它需要处理大量的知识,并从中推导出新的、有用的信息。上述方法和代码提供了一个入门级的概览,实际的应用和研究会更加复杂。


总结

知识图谱在过去的几年里已经从一个学术的概念逐渐转化为广泛应用于实际业务场景的强大工具。从最基本的概念、发展历程、研究内容,到更加复杂的知识图谱的表示、存储、获取、构建和推理,我们逐步深入了解了这一领域的技术内涵。

但是,纵观整个知识图谱的发展历程,其中最为突出的一个特点是:知识图谱是一个持续演进的领域。随着数据的增长、技术的进步以及应用场景的扩展,知识图谱所需处理的问题也在持续变化和扩展。

另外,我认为有两个核心洞见值得进一步思考:

  1. 知识图谱与人类思维:知识图谱不仅仅是一种存储和管理知识的工具,更重要的是,它在某种程度上模拟了人类的思维模式。我们如何组织、链接和使用知识,都在知识图谱中得到了很好的体现。因此,对知识图谱的研究实际上也加深了我们对人类认知的理解。

  2. 技术与应用的平衡:知识图谱的发展不应仅仅停留在技术层面。更为关键的是,如何将这些技术应用于实际问题,实现知识的最大化利用。这需要我们不断地进行技术和应用之间的平衡,确保知识图谱的技术进步能够真正地服务于实际的业务需求。

file

关注TechLead,分享AI全维度知识。作者拥有10+年互联网服务架构、AI产品研发经验、团队管理经验,同济本复旦硕,复旦机器人智能实验室成员,阿里云认证的资深架构师,项目管理专业人士,上亿营收AI产品研发负责人。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1022079.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

基于java SpringBoot和HTML实验室预约管理系统设计

摘要 实验室信息管理系统是利用计算机网络技术、数据存储技术、快速数据处理技术对实验室进行全方位管理的计算机软件系统。实验室信息管理系统从最初仅完成数据存储和有限的网络功能,发展到现在可以处理海量数据,具备完善的管理职能,并且能够…

JavaScript中的浅拷贝与深拷贝

前言 JavaScript中的浅拷贝和深拷贝是非常重要的概念,它们在处理对象和数组时具有不同的作用。在编程中,经常需要复制数据以便进行各种操作,但必须注意拷贝的方式,以确保得到预期的结果。 浅拷贝是创建一个新对象或数组&#xf…

D*算法图文详解

前面学习了Dijkstra以及A* 算法的基本原理,对于这两种算法而言,我们都能在有解的情况下找到一条沿着起点到达终点的路径。然而,这两个算法本身都是基于静态地图的,也就是说:当机器人找到路径后开始沿着起点向终点运动的…

不断探索创新 促进中国信息技术发展——南京宏控科技有限公司董事长应富忠

应富忠,男,现任南京宏控科技有限公司董事长、电子系统工程高级工程师(技术五级)、自动化系统注册工程师,先后被评为“研究所级青年突击手”、“研究所级先进工作者”、“研究所级优秀共产党员”、“南京市级考级优秀”…

微服务保护-授权规则/规则持久化

授权规则 基本规则 授权规则可以对调用方的来源做控制,有白名单和黑名单两种方式。 白名单:来源(origin)在白名单内的调用者允许访问 黑名单:来源(origin)在黑名单内的调用者不允许访问 点…

未解之迷——晶振问题导致SWD烧录时芯片no target connected,切换内部晶振后解决了

我所讲的情况是网上总结之外的另一种情况。不是Reset 后卡时间烧录,也不是烧录器问题,引脚问题等。而是STM32CubeMX软件生成问题。 芯片:STM32F103C8T6 某天我做了一块板子,按正常流程烧录,第一次可以烧录&#xff0c…

让Pegasus天马座开发板吃上STM8S标准库

WeCanStudio官方仓库的示例工程,只提供基于STM8S003寄存器方式来开发Pegasus天马座开发板。在此,我将基于官方的工程示例,将STM8S标准库移植到工程中。 先上图,看运行结果: main.c文件 #include "config.h" #include "delay.h"#de…

灯具欧盟CE认证,EMC/LVD/MD等欧盟指令介绍

CE认证产品范围 ​1.灯具类产品; ​2.家用电器设备、电动工具; ​3.个人电脑及其周边设备; ​4.音视频产品; ​5.无线产品; ​6.通讯类类产品; ​7.玩具类产品; ​8.安防产品; ​9.工业机械。 CE认证所需资料 ​1.一般2-3个测试样品; ​2.电路原理图; ​3.产品说明…

基于哈希表对unordered_map和unordered_set的封装

本章完整代码gitee仓库:对unordered_map和unordered_set的封装、unordered_map和unordered_set源码 文章目录 🍭1. 哈希表的改造🍬1.1 模板参数的改造🍬1.2 增加迭代器🍬1.3 返回值的修改 🍼2. 对unordered…

[计算机入门] 电源选项设置

3.10 电源选项设置 有时候我们的电脑一段时间没有用,会自己关掉屏幕或者直接睡眠,这是电源选项没有设置好导致的。 1、打开控制面板,打开其中的电源选项 2、点击左侧上方的选择关闭显示器的时间 3、进入到编辑计划设置界面,在…

听GPT 讲Istio源代码--pilot(6)

在 Istio 中,Pilot 是 Istio 控制平面的一个重要组件,它具有以下作用: 流量管理: Pilot 负责管理和配置服务之间的网络流量。它通过与底层的服务发现机制(如 Kubernetes 或 Consul)集成,监测服务注册和注销…

C数据结构二.练习题

一.求级数和 2.求最大子序列问题:设给定一个整数序列 ai.az..,a,(可能有负数).设计一个穷举算法,求a 的最大值。例如,对于序列 A {1,-1,1,-1,-1,1,1,1,1.1,-1,-1.1,-1,1,-1},子序列 A[5..9](1,1,1,1,1)具有最大值5 3.设有两个正整数 m 和n,编写一个算法 gcd(m,n),求它们的最大公…

WhatsApp无法收到验证码怎么办?别急,我来教你

最近收到好多小伙伴的问题咨询,而且大多是同一个问题:“WhatsApp无法验证手机号,也就是手机接收不到6位数字的短信验证码,这可如何是好?” 短信验证码收不到,连点几次重复短信后等待时间越来越久点击致电给…

B-小美的子序列(贪心)-- 牛客周赛 Round 12

示例1 输入 3 3 abc def ghi 输出 NO 示例2 输入 8 2 nm ex it td ul qu ac nt 输出 YES 说明 第1行选择第2个字母。 第2行选择第1个字母。 第3行选择第1个字母。 第4行选择第1个字母。 第5行选择第2个字母。 第6行选择第2个字母。 第7行选择第1个字母。 第8行选择第…

Idea创建springboot项目

1、选择file—>new –->project 2、选择“Spring Initializr”,点击“next”,进入工程信息配置界面修改配置信息. 备注:type类型选择“Maven(Generate a Maven based project achieve)”,生成工程路径。 3、点击next按钮&a…

【uniapp+vue3+u-picker】获取中国省市区数据结构,省市区数据三级联动json文件完整版,已实现三级联动效果

前言: 这个功能的实现,中间耽误了几天,在大佬的帮助下终于实现效果,匿名感谢xx大佬 要实现的效果如下: 1、首先需要获取省市区的数据,不考虑后端返数据,自己使用json文件的话,需要获取到完整的中国省市区数据 有个很不错的github源码可供参考,Administrative-divisio…

RK3568开发笔记(十):开发板buildroot固件移植开发的应用Demo,启动全屏显示

若该文为原创文章,转载请注明原文出处 本文章博客地址:https://hpzwl.blog.csdn.net/article/details/133021990 红胖子网络科技博文大全:开发技术集合(包含Qt实用技术、树莓派、三维、OpenCV、OpenGL、ffmpeg、OSG、单片机、软硬…

few shot目标检测survey paper笔记(迁移学习)

paper: Few-Shot Object Detection: A Comprehensive Survey (CVPR2021) meta learning需要复杂的情景训练,而迁移学习仅需在一个single-branch结构上做两步训练。 常用的结构是Faster R-CNN,下面是Faster R-CNN的结构图。 RPN的修改 当样本数量很少时…

Vue的进阶使用--模板语法应用

目录 前言 一. Vue的基础语法 1.插值 1.1文本插值 1.2HTML插值 1.3属性插值 1.4Vue演示三元条件运算 2 指令 2.1if&&else指令(v-if/v-else-if/v-else) 2.2 v-for 指令 2.3 v-on指令(动态参数) 2.4知识点补充之v-if与v-show的区别 3.过…

著名书法家傅成洪在香港第八届“一带一路”高峰论坛上展示艺术与合作的融合

香港第八届“一带一路”高峰论坛于9月13日至14日在香港隆重举行,吸引了来自海内外的6000多名嘉宾,共同回顾“一带一路”倡议的历程,并展望未来的投资和商贸机遇。这一庆祝活动恰逢“一带一路”倡议的10周年,主题定为“携手十载 共…