目录
1、数据库三范式
2、数据库事务的特性
3、MySQL数据库引擎
4、说说 InnoDB 与 MyISAM 的区别
5、索引是什么?
6、索引数据结构
7、MySQL 索引类型有哪些?
8、索引有什么优缺点?
9、使用索引应该注意些什么?
10、什么是视图?
11、什么是内联接、左外联接、右外联接?
12、说一说drop、delete与truncate的区别
13、varchar 与 char 的区别
14、varchar(30) 中的 30 代表的涵义?
15、int(11) 中的 11 代表什么涵义?
16、主键和候选键有什么区别?
17、主键与唯一索引有什么区别?
18、为什么 SELECT COUNT(*) FROM table 在 InnoDB 比 MyISAM 慢?
19、说说什么是 MVCC?
20、说说 MVCC 的实现原理
21、MySQL 中一条查询 SQL 是如何执行的?
22、MySQL 中一条更新语句是怎么执行的?
23、说说 MySQL 数据库的锁?
24、说说什么是锁升级?
25、说说悲观锁和乐观锁
26、怎样尽量避免死锁的出现?
27、并发事务带来哪些问题?
28、大表如何优化?
29、分库分表之后,id 主键如何处理?
30、MySQL 优化手段有哪些?
1、数据库三范式
- 第一范式:列不可再分。
- 第二范式:行可以唯一区分,主键约束。
- 第三范式:表的非主属性不能依赖与其他表的非主属性、外键约束,且三大范式是一级一级依赖的,第二范式建立在第一范式上,第三范式建立第一第二范式上。
2、数据库事务的特性
- 原子性(Atomic):组成一个事务的多个数据库操作是一个不可分割的原子单元,只有所有操作都成功, 整个事务才会提交。任何一个操作失败,已经执行的任何操作都必须撤销,让数据库返回初始 状态。
- 一致性(Consistency):事务操作成功后,数据库所处的状态和它的业务规则是一致的。即数据不会被破坏。 如A转账100元给B,不管操作是否成功,A和B的账户总额是不变的。
- 隔离性(Isolation):在并发数据操作时,不同的事务拥有各自的数据空间,它们的操作不会对彼此产生干 扰。
- 持久性(Durabiliy):一旦事务提交成功,事务中的所有操作都必须持久化到数据库中。
3、MySQL数据库引擎
show engines;
- MYISAM:全表锁,拥有较高的执行速度,不支持事务,不支持外键,并发性能差,占用空间相对较小,对事务完整性没有要求,以select、insert为主的应用基本上可以使用这引擎。
- Innodb:行级锁,提供了具有提交、回滚和崩溃回复能力的事务安全,支持自动增长列,支持外键约束,并发能力强,占用空间是MYISAM的2.5倍,处理效率相对会差一些。
- Memory:全表锁,存储在内容中,速度快,但会占用和数据量成正比的内存空间且数据在mysql重启时会丢失,默认使用HASH索引,检索效率非常高,但不适用于精确查找,主要用于那些内容变化不频繁的代码表。
- MERGE:是一组MYISAM表的组合。
4、说说 InnoDB 与 MyISAM 的区别
- InnoDB支持事务,MyISAM不支持,对于InnoDB每一条SQL语言都默认封装成事务,自动提 交,这样会影响速度,所以最好把多条SQL语言放在begin和commit之间,组成一个事务。
- InnoDB支持外键,而MyISAM不支持。对一个包含外键的InnoDB表转为MYISAM会失败。
- InnoDB是聚集索引,数据文件是和索引绑在一起的,必须要有主键,通过主键索引效率很高。但是辅助索引需要两次查询,先查询到主键,然后再通过主键查询到数据。因此,主键不应该 过大,因为主键太大,其他索引也都会很大。而MyISAM是非聚集索引,数据文件是分离的, 索引保存的是数据文件的指针。主键索引和辅助索引是独立的。
- InnoDB不保存表的具体行数,执行select count(*) from table时需要全表扫描。而MyISAM用 一个变量保存了整个表的行数,执行上述语句时只需要读出该变量即可,速度很快。
- Innodb不支持全文索引,而MyISAM支持全文索引,查询效率上MyISAM要高。
-
在 MySQL 5.1 及之前的版本中, MyISAM 是默认的存储引擎,而在 MySQL 5.5 版本以后,默认使用 InnoDB 存储引擎。
-
MyISAM 索引文件和数据文件是分离的(非聚集),一张表生成三个文件:
xxx.frm:存储表结构
xxx.MYD:存储表数据
xxx.MYI:存储表索引 -
索引和数据(索引行对应的所有列数据)不是分离的(聚集) ,一张表生成两个文件:
xxx.frm:存储表结构
xxx.ibd:存储索引和数据
5、索引是什么?
- 官方介绍索引是帮助MySQL高效获取数据的数据结构。更通俗的说,数据库索引好比是一本书 前面的目录,能加快数据库的查询速度。
- 一般来说索引本身也很大,不可能全部存储在内存中,因此索引往往是存储在磁盘上的文件中 的(可能存储在单独的索引文件中,也可能和数据一起存储在数据文件中)。
- 我们通常所说的索引,包括聚集索引、覆盖索引、组合索引、前缀索引、唯一索引等,没有特 别说明,默认都是使用B+树结构组织(多路搜索树,并不一定是二叉的)的索引。
6、索引数据结构
- 二叉树
- 红黑树(二叉平衡树)
- Hash表
对索引的key进行一次hash计算就可以定位出数据存储的位置。
等值查询效率高(=,IN),不能排序,不能进行范围查询,hash冲突问题。
- B-Tree
节点具有相同的深度,页节点的指针为空。
所有索引元素不重复。
节点中的数据所有从左到右递增排列。
数据有序,范围查询。
- B+Tree(B-Tree变种)
非页子节点不存储data,只存储索引(冗余),可以放更多的索引。
页子节点包含所有的索引字段。
页子节点用指针(双向指针)连接,提高区间访问的性能。
高版本MySQL(MySQL8)加载的时候,一二层叶子数据(冗余索引)加载在内存中,底层叶子数据存储在磁盘。
7、MySQL 索引类型有哪些?
- 主键索引:索引列中的值必须是唯一的,不允许有空值。
- 普通索引:MySQL中基本索引类型,没有什么限制,允许在定义索引的列中插入重复值和空值。
- 唯一索引:索引列中的值必须是唯一的,但是允许为空值。
- 全文索引:只能在文本类型CHAR、VARCHAR、TEXT类型字段上创建全文索引。字段长度比较大时,如果创建普通索引,在进行like模糊查询时效率比较低,这时可以创建全文索引。MyISAM和InnoDB中都可以使用全文索引。
- 空间索引:MySQL在5.7之后的版本支持了空间索引,而且支持OpenGIS几何数据模型。MySQL在空间索引这方面遵循OpenGIS几何数据模型规则。
- 前缀索引:在文本类型如CHAR、VARCHAR、TEXT类列上创建索引时,可以指定索引列的长度,但是数值类型不能指定。
- 其他(按照索引列数量分类):
1. 单列索引。
2. 组合索引:组合索引的使用,需要遵循最左前缀匹配原则(最左匹配原则)。一般情况下在条件允许的情况下使用组合索引替代多个单列索引使用。
8、索引有什么优缺点?
优点:
- 提高数据的检索速度,降低数据库IO成本。使用索引的意义就是通过缩小表中需要查询的记录数目从而加快搜索的速度。
- 降低数据排序的成本,降低CPU消耗。索引之所以查询快,是原因事先已经将数据排好序。若该字段正好需要排序,则正好降低了排序的成本。
缺点:
- 占用存储空间。索引实际上也是一张表,记录了主键与索引字段,一般以索引文件的形式存储在磁盘上。
- 降低更新表速度。表的数据发生了变化,对应的索引也需要一起变更,从而降低了更新速度。否则索引指向的物理数据可能不对,这也是索引失效的原因之一。
9、使用索引应该注意些什么?
10、什么是视图?
视图是一种虚拟的表,具有和物理表相同的功能。可以对视图进行增,改,查,操作,试图通常是
有一个表或者多个表的行或列的子集。对视图的修改不影响基本表。它使得我们获取数据更容易,
相比多表查询。
11、什么是内联接、左外联接、右外联接?
- 内联接(Inner Join):匹配2张表中相关联的记录。
- 左外联接(Left Outer Join):除了匹配2张表中相关联的记录外,还会匹配左表中剩余的记 录,右表中未匹配到的字段用NULL表示。
- 右外联接(Right Outer Join):除了匹配2张表中相关联的记录外,还会匹配右表中剩余的记 录,左表中未匹配到的字段用NULL表示。在判定左表和右表时,要根据表名出现在Outer Join 的左右位置关系。
12、说一说drop、delete与truncate的区别
SQL中的drop、delete、truncate都表示删除,但是三者有一些差别。
- delete 和 truncate只删除表的数据不删除表的结构。速度,一般来说:drop > truncate > delete。delete 语句是dml,这个操作会放到rollback segement中,事务提交之后才生效;。如果有相应的trigger,执行的时候将被触发。
- truncate,drop是ddl, 操作立即生效,原数据不放到rollback segment中,不能回滚。操作不触发trigger.。
13、varchar 与 char 的区别
- CHAR 和 VARCHAR 类型在存储和检索方面有所不同
- char 是一种固定长度的类型,长度值范围是1 到255当 CHAR 值被存储时,多余部分用空格填充到特定长度,检索CHAR 值时需删除尾随空格。varchar 则是一种可变长度的类型。
- 对效率要求高用 char,对空间使用要求高用 varchar。
14、varchar(30) 中的 30 代表的涵义?
varchar(30) 中 30 的涵义最多存放 30 个字符。varchar(30) 和 (130) 存储 hello 所占空间一 样,但后者在排序时会消耗更多内存,因为 ORDER BY col 采用 fifixed_length 计算 col 长度 (memory 引擎也一样)。
15、int(11) 中的 11 代表什么涵义?
int(11) 中的 11,不影响字段存储的范围,只影响展示效果。
16、主键和候选键有什么区别?
表格的每一行都由主键唯一标识,一个表只有一个主键。主键也是候选键。按照惯例,候选键可以被指定为主键,并且可以用于任何外 键引用。
17、主键与唯一索引有什么区别?
- 主键一定会创建一个唯一索引,但是有唯一索引的列不一定是主键。
- 主键不允许为空值,唯一索引列允许空值。
- 一个表只能有一个主键,但是可以有多个唯一索引。
- 主键可以被其他表引用为外键,唯一索引列不可以。
- 主键是一种约束,而唯一索引是一种索引,是表的冗余数据结构,两者有本质区别。
18、为什么 SELECT COUNT(*) FROM table 在 InnoDB 比 MyISAM 慢?
对于 SELECT COUNT(*) FROM table 语句,在没有 WHERE 条件的情况下,InnoDB 比 MyISAM 可能会慢很多,尤其在大表的情况下。因为,InnoDB 是去实时统计结果,会全表扫描;MyISAM内部维持了一个计数器,预存了结果,所以直接返回即可。
19、说说什么是 MVCC?
多版本并发控制(MVCC=Multi-Version Concurrency Control),是一种用来解决读 - 写冲突的无
锁并发控制。也就是为事务分配单向增长的时间戳,为每个修改保存一个版本。版本与事务时间戳
关联,读操作只读该事务开始前的数据库的快照(复制了一份数据)。这样在读操作不用阻塞写操
作,写操作不用阻塞读操作,提高了数据库并发读写的性能,避免了脏读和不可重复读,但不能解决更新丢失问题。
20、说说 MVCC 的实现原理
MVCC 的目的就是多版本并发控制,在数据库中的实现,就是为了解决读写冲突,它的实现原理主 要是依赖记录中的 3 个隐式字段、undo 日志、Read View 来实现的。
21、MySQL 中一条查询 SQL 是如何执行的?
select name from t_user where id=1;
- 取得链接:使用使用到 MySQL 中的连接器。
- 查询缓存:key 为 SQL 语句,value 为查询结果,如果查到就直接返回。不建议使用次缓存,在 MySQL 8.0 版本已经将查询缓存删除,也就是说 MySQL 8.0 版本后不存在此功能。
- 分析器:分为词法分析和语法分析。此阶段只是做一些 SQL 解析,语法校验。所以一般语法错误在此阶段。
- 优化器:是在表里有多个索引的时候,决定使用哪个索引;或者一个语句中存在多表关联的时候(join),决定各个表的连接顺序。
- 执行器:通过分析器让 SQL 知道你要干啥,通过优化器知道该怎么做,于是开始执行语句。执行语句的时候还要判断是否具备此权限,没有权限就直接返回提示没有权限的错误;有权限则打开表,根据表的引擎定义,去使用这个引擎提供的接口,获取这个表的第一行,判断 id 是都等于 1。如果是,直接返回;如果不是继续调用引擎接口去下一行,重复相同的判断,直到取到这个表的最后一行,最后返回。
22、MySQL 中一条更新语句是怎么执行的?
update t_user set name = 'XXX' where id = 1;
- 加载id=1的记录所在的整页数据到缓存池。
- 旧值写入undolog便于回滚。
- 更新内存数据。
- 写redo log到RedoBuff。
- redo log顺序写入磁盘,准备提交事务(prepare阶段)。
- 准备提交事务,binlog写入磁盘。
- 写入commit标记到redo log文件里,提交事务完成,该标记为了保证事务提交后redo log和binlog数据一致。
- 系统空闲时,随机写入磁盘,以page为单位写入。
为什么MySQL不直接更新磁盘上的数据而设置这么一套复杂的机制来执行SQL?
因为来一个请求就直接对磁盘文件进行随机读写,然后更新磁盘文件里的数据性能可能相当差,所以直接更新磁盘文件不能让数据库抗住高并发。
MySQL这套机制看起来复杂,但他可以保证每个更新请求都是更新内存BufferPool,然后顺序写日志文件,同时还能保证各种异常情况下的数据一致性。
更新内存的性能是极高的,然后顺序写磁盘上的日志文件的性能也是远高于随机读写磁盘文件的。
正是通过这套机制,才能让MySQL在较高配置的机器上每秒可以抗下几千甚至上万的读写请求。
什么是redo log和binlog的2阶段提交?
prepare 阶段:binlog写入磁盘持久化。
- 这个阶段SQL已经执行并更新BufferPool内存数据。
- 生成redo log到redolog buff并开始顺序写入磁盘。
commit 阶段:写入commit标记到redo log文件里,提交事务完成。
什么是WAL机制?
先写redo log后刷新数据库文件的机制叫做WAL(Write-Ahead Logging)机制,效率更高。
23、说说 MySQL 数据库的锁?
MySQL 中有共享锁和排它锁,也就是读锁和写锁。
- 共享锁:不堵塞,多个用户可以同一时刻读取同一个资源,相互之间没有影响。
- 排它锁:一个写操作阻塞其他的读锁和写锁,这样可以只允许一个用户进行写入,防止其他用户读取正在写入的资源。
- 表锁:系统开销最小,会锁定整张表,MyISAM 使用表锁。
- 行锁:容易出现死锁,发生冲突概率低,并发高,InnoDB 支持行锁(必须有索引才能实现,否则会自动锁全表,那么就不是行锁了)。
24、说说什么是锁升级?
- MySQL 中有共享锁和排它锁,也就是读锁和写锁。MySQL 行锁只能加在索引上,如果操作不走索引,就会升级为表锁。因为 InnoDB 的行锁是加在索引上的,如果不走索引,自然就没法使用行锁了,原因是 InnoDB 是将 primary key index和相关的行数据共同放在 B+ 树的页节点。InnoDB 一定会有一个 primary key,secondary index 查找的时候,也是通过找到对应的 primary,再找对应的数据行。
- 当非唯一索引上记录数超过一定数量时,行锁也会升级为表锁。测试发现当非唯一索引相同的内容不少于整个表记录的二分之一时会升级为表锁。因为当非唯一索引相同的内容达到整个记录的二分之一时,索引需要的性能比全文检索还要大,查询语句优化时会选择不走索引,造成索引失效,行锁自然就会升级为表锁。
25、说说悲观锁和乐观锁
- 悲观锁:说的是数据库被外界(包括本系统当前的其他事物以及来自外部系统的事务处理)修改保持着保守态度,因此在整个数据修改过程中,将数据处于锁状态。悲观的实现往往是依靠数据库提供的锁机制,也只有数据库层面提供的锁机制才能真正保证数据访问的排他性,否则,即使在本系统汇总实现了加锁机制,也是没有办法保证系统不会修改数据。在悲观锁的情况下,为了保证事务的隔离性,就需要一致性锁定读。读取数据时给加锁,其它事务无法修改这些数据。修改删除数据时也要加锁,其它事务无法读取这些数据。
- 乐观锁:相对悲观锁而言,乐观锁机制采取了更加宽松的加锁机制。悲观锁大多数情况下依靠数据库的锁机制实现,以保证操作最大程度的独占性。但随之而来的就是数据库性能的大量开销,特别是对长事务而言,这样的开销往往无法承受。而乐观锁机制在一定程度上解决了这个问题。乐观锁,大多是基于数据版本(Version)记录机制实现。何谓数据版本?即为数据增加一个版本标识,在基于数据库表的版本解决方案中,一般是通过为数据库表增加一个“version”字段来实现。读取出数据时,将此版本号一同读出,之后更新时,对此版本号加一。此时,将提交数据的版本数据与数据库表对应记录的当前版本信息进行比对,如果提交的数据版本号大于数据库表当前版本号,则予以更新,否则认为是过期数据。
26、怎样尽量避免死锁的出现?
- 设置获取锁的超时时间,至少能保证最差情况下,可以退出程序,不至于一直等待导致死锁。
- 设置按照同一顺序访问资源,类似于串行执行。
- 避免事务中的用户交叉。
- 保持事务简短并在一个批处理中。
- 使用低隔离级别。
- 使用绑定链接。
27、并发事务带来哪些问题?
- 脏读(Dirty read):当一个事务正在访问数据并且对数据进行了修改,而这种修改还没有提交到数据库中,这时另外一个事务也访问了这个数据,然后使用了这个数据。因为这个数据是还没有提交的数据,那么另外一个事务读到的这个数据是“脏数据”,依据“脏数据”所做的操作可能是不正确的。
- 丢失修改(Lost to modify):指在一个事务读取一个数据时,另外一个事务也访问了该数据,那么在第一个事务中修改了这个数据后,第二个事务也修改了这个数据。这样第一个事务内的修改结果就被丢失,因此称为丢失修改。 例如:事务1读取某表中的数据A=20,事务2也读取A=20,事务1修改A=A-1,事务2也修改A=A-1,最终结果A=19,事务1的修改被丢失。
- 不可重复读(Unrepeatableread):指在一个事务内多次读同一数据。在这个事务还没有结束时,另一个事务也访问该数据。那么,在第一个事务中的两次读数据之间,由于第二个事务的修改导致第一个事务两次读取的数据可能不太一样。这就发生了在一个事务内两次读到的数据是不一样的情况,因此称为不可重复读。
- 幻读(Phantom read):幻读与不可重复读类似。它发生在一个事务(T1)读取了几行数据,接着另一个并发事务(T2)插入了一些数据时。在随后的查询中,第一个事务(T1)就会发现多了一些原本不存在的记录,就好像发生了幻觉一样,所以称为幻读。
不可重复读和幻读区别:
不可重复读的重点是修改比如多次读取一条记录发现其中某些列的值被修改,幻读的重点在于新增
或者删除比如多次读取一条记录发现记录增多或减少了。
28、大表如何优化?
- 限定数据的范围:务必禁止不带任何限制数据范围条件的查询语句。
比如:我们当用户在查询订单历史的时候,我们可以控制在一个月的范围内。 - 读/写分离:经典的数据库拆分方案,主库负责写,从库负责读。
- 垂直分区:根据数据库里面数据表的相关性进行拆分。
例如,用户表中既有用户的登录信息又有用户的基本信息,可以将用户表拆分成两个单独的表,甚至放到单独的库做分库。简单来说垂直拆分是指数据表列的拆分,把一张列比较多的表拆分为多张表。
垂直拆分的优点:可以使得列数据变小,在查询时减少读取的Block数,减少I/O次数。此外,垂直分区可以简化表的结构,易于维护。
垂直拆分的缺点:主键会出现冗余,需要管理冗余列,并会引起Join操作,可以通过在应用层进行Join来解决。此外,垂直分区会让事务变得更加复杂。 - 水平分区:保持数据表结构不变,通过某种策略存储数据分片。这样每一片数据分散到不同的表或者库中,达到了分布式的目的。 水平拆分可以支撑非常大的数据量。水平拆分是指数据表行的拆分,表的行数超过200万行时,就会变慢,这时可以把一张的表的数据拆成多张表来存放。
例如:我们可以将用户信息表拆分成多个用户信息表,这样就可以避免单一表数据量过大对性能造成影响。
水平拆分可以支持非常大的数据量。需要注意的一点是:分表仅仅是解决了单一表数据过大的问题,但由于表的数据还是在同一台机器上,其实对于提升MySQL并发能力没有什么意义,所以水平拆分最好分库 。水平拆分能够 支持非常大的数据量存储,应用端改造也少,但 分片事务难以解决 ,跨节点Join性能较差,逻辑复杂。《Java工程师修炼之道》的作者推荐 尽量不要对数据进行分片,因为拆分会带来逻辑、部署、运维的各种复杂度 ,一般的数据表在优化得当的情况下支撑千万以下的数据量是没有太大问题的。如果实在要分片,尽量选择客户端分片架构,这样可以减少一次和中间件的网络I/O。
数据库分片的两种常见方案:
- 客户端代理: 分片逻辑在应用端,封装在jar包中,通过修改或者封装JDBC层来实现。 当当网的 Sharding-JDBC 、阿里的TDDL是两种比较常用的实现。
- 中间件代理: 在应用和数据中间加了一个代理层。分片逻辑统一维护在中间件服务中。 我们现在谈的 Mycat 、360的Atlas、网易的DDB等等都是这种架构的实现。
详细内容可以参考:MySQL大表优化方案。
29、分库分表之后,id 主键如何处理?
因为要是分成多个表之后,每个表都是从 1 开始累加,这样是不对的,我们需要一个全局唯一的 id来支持。生成全局 id 有下面这几种方式:
- UUID:不适合作为主键,因为太长了,并且无序不可读,查询效率低。比较适合用于生成唯一的名字的标示比如文件的名字。
- 数据库自增 id : 两台数据库分别设置不同步长,生成不重复ID的策略来实现高可用。这种方式生成的 id 有序,但是需要独立部署数据库实例,成本高,还会有性能瓶颈。
- 利用 redis 生成 id : 性能比较好,灵活方便,不依赖于数据库。但是,引入了新的组件造成系统更加复杂,可用性降低,编码更加复杂,增加了系统成本。
- Twitter的snowflake算法https://github.com/twitter-archive/snowflake。
- 美团的Leaf分布式ID生成系统 :Leaf 是美团开源的分布式ID生成器,能保证全局唯一性、趋势递增、单调递增、信息安全,里面也提到了几种分布式方案的对比,但也需要依赖关系数据库、Zookeeper等中间件。https://tech.meituan.com/2017/04/21/mt-leaf.html
30、MySQL 优化手段有哪些?
表结构&索引:
- 选择合适的数据库引擎。
- 选择正确的索引。
- 适当的反范式设计表结构。
SQL语句优化:
- 避免select * 查询,尽可能使用索引扫描等等。
- 只要一行数据时使用 limit 1。查询时如果已知会得到一条数据,这种情况下加上limit 1会增加性能。因为mysql数据库引擎会在找到一条结果停止搜索,而不是继续查询下一条是否符合标准直到所有记录查询完毕。
- not exists代替not in。not exists 用到了连接能够发挥已经建立好的索引的作用,not in不能使用索引。not in是最慢的方式要同每条记录比较,在数据量比较大的操作中不建议使用这种方式。
- 操作符的优化,尽量不采用不利于索引的操作符。如:in、not in、is null、is not null、<> 等,某个字段总要拿来搜索,为其建立索引。
- 减少使用or,使用 union all 或者 union 来替代。
Mysql参数优化:
- 设置Buffer_pool大小,官方推荐总内存50%-70%左右。
- 设置刷盘策略,平衡好数据安全性和性能关系。
sync-binlog:控制binlog刷入磁盘的频率,default vaule:1。
0:禁止MySQL服务器将二进制日志同步到磁盘。相反,MySQL服务器依赖于操作系统不时地将二进制日志刷新到磁盘,就像处理其他文件一样。此设置提供了最佳性能,但是在出现电源故障或操作系统崩溃时,服务器可能提交了未同步到二进制日志的事务。
1:允许在事务提交之前将二进制日志同步到磁盘。这是最安全的设置,但是由于磁盘写操作的增加,可能会对性能产生负面影响。在出现电源故障或操作系统崩溃时,二进制日志中缺少的事务仅处于准备状态。这允许自动恢复例程回滚事务,从而保证二进制日志中没有丢失任何事务。
N:其中N是0或1之外的值:在收集了N个二进制日志提交组之后,将二进制日志同步到磁盘。在出现电源故障或操作系统崩溃时,服务器可能提交了未刷新到二进制日志的事务。由于磁盘写操作数量的增加,该设置可能会对性能产生负面影响。值越大,性能越好,但是数据丢失的风险越大。
innodb-flush-log-at-trx-commit:控制redo log刷新到磁盘,default vaule:1。
1:默认设置为1是完全符合ACID要求的。日志在每次事务提交时被写入并刷新到磁盘。
0:设置为0时,每秒将日志写入并刷新到磁盘一次。没有刷新日志的事务可能在崩溃中丢失。
2:如果设置为2,则在每个事务提交之后写入日志,并每秒刷新一次磁盘。没有刷新日志的事务可能在崩溃中丢失。
硬件&系统设置
- CPU核心数、磁盘的读写性能、网卡、内存大小等等。