竞赛选题 基于深度学习的中文情感分类 - 卷积神经网络 情感分类 情感分析 情感识别 评论情感分类

news2025/1/11 23:37:32

文章目录

  • 1 前言
  • 2 情感文本分类
    • 2.1 参考论文
    • 2.2 输入层
    • 2.3 第一层卷积层:
    • 2.4 池化层:
    • 2.5 全连接+softmax层:
    • 2.6 训练方案
  • 3 实现
    • 3.1 sentence部分
    • 3.2 filters部分
    • 3.3 featuremaps部分
    • 3.4 1max部分
    • 3.5 concat1max部分
    • 3.6 关键代码
  • 4 实现效果
    • 4.1 测试英文情感分类效果
    • 4.2 测试中文情感分类效果
  • 5 调参实验结论
  • 6 建议
  • 7 最后

1 前言

🔥 优质竞赛项目系列,今天要分享的是

基于深度学习的中文情感分类

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

2 情感文本分类

2.1 参考论文

Convolutional Neural Networks for Sentence
Classification

模型结构

在这里插入图片描述

在短文本分析任务中,由于句子句长长度有限、结构紧凑、能够独立表达意思,使得CNN在处理这一类问题上成为可能,主要思想是将ngram模型与卷积操作结合起来

2.2 输入层

如图所示,输入层是句子中的词语对应的wordvector依次(从上到下)排列的矩阵,假设句子有 n 个词,vector的维数为 k ,那么这个矩阵就是 n
× k 的(在CNN中可以看作一副高度为n、宽度为k的图像)。

这个矩阵的类型可以是静态的(static),也可以是动态的(non static)。静态就是word
vector是固定不变的,而动态则是在模型训练过程中,word vector也当做是可优化的参数,通常把反向误差传播导致word
vector中值发生变化的这一过程称为Fine tune。(这里如果word
vector如果是随机初始化的,不仅训练得到了CNN分类模型,还得到了word2vec这个副产品了,如果已经有训练的word
vector,那么其实是一个迁移学习的过程)

对于未登录词的vector,可以用0或者随机小的正数来填充。

2.3 第一层卷积层:

输入层通过卷积操作得到若干个Feature Map,卷积窗口的大小为 h ×k ,其中 h 表示纵向词语的个数,而 k 表示word
vector的维数。通过这样一个大型的卷积窗口,将得到若干个列数为1的Feature Map。(熟悉NLP中N-GRAM模型的读者应该懂得这个意思)。

2.4 池化层:

接下来的池化层,文中用了一种称为Max-over-timePooling的方法。这种方法就是简单地从之前一维的Feature
Map中提出最大的值,文中解释最大值代表着最重要的信号。可以看出,这种Pooling方式可以解决可变长度的句子输入问题(因为不管Feature
Map中有多少个值,只需要提取其中的最大值)。最终池化层的输出为各个Feature Map的最大值们,即一个一维的向量。

2.5 全连接+softmax层:

池化层的一维向量的输出通过全连接的方式,连接一个Softmax层,Softmax层可根据任务的需要设置(通常反映着最终类别上的概率分布)。

2.6 训练方案

在倒数第二层的全连接部分上使用Dropout技术,Dropout是指在模型训练时随机让网络某些隐含层节点的权重不工作,不工作的那些节点可以暂时认为不是网络结构的一部分,但是它的权重得保留下来(只是暂时不更新而已),因为下次样本输入时它可能又得工作了,它是防止模型过拟合的一种常用的trikc。同时对全连接层上的权值参数给予L2正则化的限制。这样做的好处是防止隐藏层单元自适应(或者对称),从而减轻过拟合的程度。

在样本处理上使用minibatch方式来降低一次模型拟合计算量,使用shuffle_batch的方式来降低各批次输入样本之间的相关性(在机器学习中,如果训练数据之间相关性很大,可能会让结果很差、泛化能力得不到训练、这时通常需要将训练数据打散,称之为shuffle_batch)。

3 实现

在这里插入图片描述
我们以上图为例,图上用红色标签标注了5部分,结合这5个标签,具体解释下整个过程的操作,来看看CNN如何解决文本分类问题的。

3.1 sentence部分

上图句子为“[I like this movie very much!”
,一共有两个单词加上一个感叹号,关于这个标点符号,不同学者有不同的操作,比如去除标点符号。在这里我们先不去除,那么整个句子有7个词,词向量维度为5,那么整个句子矩阵大小为7x5

3.2 filters部分

filters的区域大小可以使不同的,在这里取(2,3,4)3种大小,每种大小的filter有两个不同的值的filter,所以一共是有6个filter。

3.3 featuremaps部分

我们在句子矩阵和过滤器矩阵填入一些值,那么我们可以更好理解卷积计算过程,这和CNN原理那篇文章一样

在这里插入图片描述

比如我们取大小为2的filter,最开始与句子矩阵的前两行做乘积相加,得到0.6 x 0.2 + 0.5 x 0.1 + … + 0.1 x 0.1 =
0.51,然后将filter向下移动1个位置得到0.53.最终生成的feature map大小为(7-2+1x1)=6。
为了获得feature map,我们添加一个bias项和一个激活函数,比如Relu

3.4 1max部分

因为不同大小的filter获取到的feature map大小也不一样,为了解决这个问题,然后添加一层max-
pooling,选取一个最大值,相同大小的组合在一起

3.5 concat1max部分

经过max-pooling操作之后,我们将固定长度的向量给sofamax,来预测文本的类别。

3.6 关键代码

下面是利用Keras实现的CNN文本分类部分代码:



    # 创建tensor
    print("正在创建模型...")
    inputs=Input(shape=(sequence_length,),dtype='int32')
    embedding=Embedding(input_dim=vocabulary_size,output_dim=embedding_dim,input_length=sequence_length)(inputs)
    reshape=Reshape((sequence_length,embedding_dim,1))(embedding)
    
    # cnn
    conv_0=Conv2D(num_filters,kernel_size=(filter_sizes[0],embedding_dim),padding='valid',kernel_initializer='normal',activation='relu')(reshape)
    conv_1=Conv2D(num_filters,kernel_size=(filter_sizes[1],embedding_dim),padding='valid',kernel_initializer='normal',activation='relu')(reshape)
    conv_2=Conv2D(num_filters,kernel_size=(filter_sizes[2],embedding_dim),padding='valid',kernel_initializer='normal',activation='relu')(reshape)
    
    maxpool_0=MaxPool2D(pool_size=(sequence_length-filter_sizes[0]+1,1),strides=(1,1),padding='valid')(conv_0)
    maxpool_1=MaxPool2D(pool_size=(sequence_length-filter_sizes[1]+1,1),strides=(1,1),padding='valid')(conv_1)
    maxpool_2=MaxPool2D(pool_size=(sequence_length-filter_sizes[2]+1,1),strides=(1,1),padding='valid')(conv_2)


    concatenated_tensor = Concatenate(axis=1)([maxpool_0, maxpool_1, maxpool_2])
    flatten = Flatten()(concatenated_tensor)
    dropout = Dropout(drop)(flatten)
    output = Dense(units=2, activation='softmax')(dropout)
    model=Model(inputs=inputs,outputs=output)


**main.py**


    import os
    os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"   # see issue #152
    os.environ["CUDA_VISIBLE_DEVICES"] = ""



    import re
    import numpy as np
    from flask import Flask, render_template, request
    from keras.models import load_model
    from data_helpers_english import build_input_english
    from data_helpers_chinese import build_input_chinese
    
    app = Flask(__name__)


    en_model = load_model('results/weights.007-0.7618.hdf5')
    ch_model = load_model('results/chinese.weights.003-0.9083.hdf5')
    # load 进来模型紧接着就执行一次 predict 函数
    print('test train...')
    print(en_model.predict(np.zeros((1, 56))))
    print(ch_model.predict(np.zeros((1, 50))))
    print('test done.')
    
    def en_predict(input_x):
        sentence = input_x
        input_x = build_input_english(input_x)
        y_pred = en_model.predict(input_x)
        result = list(y_pred[0])
        result = {'sentence': sentence, 'positive': result[1], 'negative': result[0]}
        return result
    
    def ch_predict(input_x):
        sentence = input_x
        input_x = build_input_chinese(input_x)
        y_pred = ch_model.predict(input_x)
        result = list(y_pred[0])
        result = {'sentence': sentence, 'positive': result[1], 'negative': result[0]}
        return result
    
    @app.route('/classification', methods=['POST', 'GET'])
    def english():
        if request.method == 'POST':
            review = request.form['review']
            # 来判断是中文句子/还是英文句子
            review_flag = re.sub(r"[^A-Za-z0-9(),!?\'\`]", " ", review)  # 去除数字
            review_flag = re.sub("[\s+\.\!\/_,$%^*(+\"\')]+|[+——()?【】“”!,。?、~@#¥%……&*()]+", "", review_flag)
            if review_flag:
                result = en_predict(review)
                # result = {'sentence': 'hello', 'positive': '03.87878', 'negative': '03.64465'}
                return render_template('index.html', result=result)
            else:
                result = ch_predict(review)
                # result = {'sentence': 'hello', 'positive': '03.87878', 'negative': '03.64465'}
                return render_template('index.html', result=result)
        return render_template('index.html')
    
    #
    # if __name__ == '__main__':
    #     app.run(host='0.0.0.0', debug=True)

4 实现效果

4.1 测试英文情感分类效果

在这里插入图片描述
准训练结果:验证集76%左右

4.2 测试中文情感分类效果

在这里插入图片描述

准训练结果:验证集91%左右

5 调参实验结论

  • 由于模型训练过程中的随机性因素,如随机初始化的权重参数,mini-batch,随机梯度下降优化算法等,造成模型在数据集上的结果有一定的浮动,如准确率(accuracy)能达到1.5%的浮动,而AUC则有3.4%的浮动;
  • 词向量是使用word2vec还是GloVe,对实验结果有一定的影响,具体哪个更好依赖于任务本身;
  • Filter的大小对模型性能有较大的影响,并且Filter的参数应该是可以更新的;
  • Feature Map的数量也有一定影响,但是需要兼顾模型的训练效率;
  • 1-max pooling的方式已经足够好了,相比于其他的pooling方式而言;
  • 正则化的作用微乎其微。

6 建议

  • 使用non-static版本的word2vec或者GloVe要比单纯的one-hot representation取得的效果好得多;
  • 为了找到最优的过滤器(Filter)大小,可以使用线性搜索的方法。通常过滤器的大小范围在1-10之间,当然对- 于长句,使用更大的过滤器也是有必要的;
  • Feature Map的数量在100-600之间;
  • 可以尽量多尝试激活函数,实验发现ReLU和tanh两种激活函数表现较佳;
  • 使用简单的1-max pooling就已经足够了,可以没必要设置太复杂的pooling方式;
  • 当发现增加Feature Map的数量使得模型的性能下降时,可以考虑增大正则的力度,如调高dropout的概率;
  • 为了检验模型的性能水平,多次反复的交叉验证是必要的,这可以确保模型的高性能并不是偶然。

7 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1014766.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

多线程回顾、集合Collection、Set、List等基本知识

多线程回顾 问: 多线程的两种创建方式? 继承Thread类实现Runnable接口线程池Callable 问:多线程通常会遇到线程安全问题? 什么情况下会遇到线程安全问题? 答:一个数据被多个线程访问(有读有写) 解决这个问题的方式? SE:同步锁 synchronized A : 同步代码块 B : 同步方法…

Prometheus+Grafana可视化监控【Redis状态】

文章目录 一、安装Docker二、安装Redis数据库(Docker容器方式)三、安装Prometheus四、安装Grafana五、Pronetheus和Grafana相关联六、安装redis_exporter七、Grafana添加Redis监控模板 一、安装Docker 注意:我这里使用之前写好脚本进行安装Docker,如果已…

零碳联盟:为气候创新而生的全球合作

全球气候危机正逼近,而在这个关键时刻,红杉全球携手零碳联盟,共同致力于推动绿色科技的创新和应用,助力低碳经济的崛起。这一合作的宣布在红杉全球执行合伙人、红杉中国创始及执行合伙人沈南鹏的一番深思熟虑下得以实现。他强调&a…

Leetcode 剑指 Offer II 044. 在每个树行中找最大值

题目难度: 中等 原题链接 今天继续更新 Leetcode 的剑指 Offer(专项突击版)系列, 大家在公众号 算法精选 里回复 剑指offer2 就能看到该系列当前连载的所有文章了, 记得关注哦~ 题目描述 给定一棵二叉树的根节点 root ,请找出该二叉树中每一…

【JavaEE】多线程(二)

多线程(二) 文章目录 多线程(二)第一个多线程程序观察线程sleep创建线程继承Thread类,重写run方法实现Runnable, 重写run继承Thread,重写run实现Runnable,重写run基于lambda表达式 T…

ETL与ELT理解

ETL ETL( Extract-Transform-Load),用来描述将数据从来源端经过抽取(Extract)、转换(Transform)、加载(Load)至目的端的过程。ETL模式适用于小数据量集。如果在转换过程…

利用hutool工具类实现验证码功能

hutool工具类实现验证码 一.生成验证码二.校验验证码三.使用案例1.引入hutool工具类2.VerifyCodeResp接口响应体3.VerifyCodeController验证码工具类4.测试验证5.项目结构及源码下载 利用hutool工具类,可以很方便生成不同类型的验证码。这里简单记录下使用过程。 一…

1500*C. Tenzing and Balls (线性DP)

解析: 每次选择两个相同的数,删去他们以及他们之间的所有数,问最多可以删除多少? DP,对于某个位置 i ,其前面有多个 j 使得 a[i]a[j],所以使用 f[i] 来记录前 i 个数能够删除的最大值。 #inclu…

内网横向移动

内网横向移动 当攻击者在拿下一台内网主机后,通常会利用当前拿下的机器当作跳板,进一步攻击 内网其他主机,扩大攻击影响范围。 攻击机:Kali Linux 靶机: Windows server 2008 WEB 10.10.10.20…

C: . 与 -> 的区别

相同点&#xff1a; 功能相同&#xff1a;访问结构体或者类的成员。优先级相同。 不同点&#xff1a; 结构体变量用 . 来访问成员&#xff1b;结构体指针用 ->来访问成员&#xff1b; #include <stdio.h> #include<string.h> //首先定义结构体类型student&a…

达摩院SPACE对话大模型:预训练语言模型,预训练对话模型,知识注入

01 预训练语言模型 VS 预训练对话模型 1. 大规模语言模型 过去几年 NLP 领域的重大进展&#xff0c;主要是大型预训练模型出现与大规模使用。预训练语言模型有了很大的发展&#xff0c;出现了很多变种。但是&#xff0c;本质上都还是语言模型&#xff0c;如上图右边的流程图所…

练习-使用ApplicationContext中事件发送以及AOP来实现代码解耦

案例要求 将用户注册与用户发送消息之间进行解耦 实现 ApplicationContext接口 具体文章见&#xff1a;BeanFactory与ApplicationContext_熵240的博客-CSDN博客 创建事件类 package com.example;import org.springframework.context.ApplicationEvent;public class UserRegis…

回溯算法解决分割回文串

回溯算法解分割回文串 力扣131 给你一个字符串 s&#xff0c;请你将 s 分割成一些子串&#xff0c;使每个子串都是 回文串 。返回 s 所有可能的分割方案。 回文串 是正着读和反着读都一样的字符串。 示例 1&#xff1a; 输入&#xff1a;s "aab" 输出&#xff1…

婚恋相亲系统小程序源码金媒v10.0版 红娘系统pc端+h5端+公众好端统一后台管理模块

婚恋相亲系统小程序源码 金媒v10.0版本 红娘系统正版pc端+h5端+公众好端 统一后台管理 模块:vip模块,活动报名,红娘模块,上榜模块,婚恋文章,动态模块,红娘认领,认证模块(五种,有实名,手机,学历,收入,房子)等等。 多种模板 后台 管理员后台 红娘独立后台,…

Python 字符串格式化

视频版教程 Python3零基础7天入门实战视频教程 我们前面学到字符串拼接&#xff0c;如果简单的2,3个字符串拼接那还算好&#xff0c;如果大于3个变量的拼接&#xff0c;就比较麻烦。还有一点&#xff0c;就是字符串无法和和其他类型直接拼接&#xff0c;需要进行类型转换&…

地奥“畅依笙”革故鼎新,新品面市! 呵护肠胃 助力大健康!

根据平安健康发布的《2021国民肠道健康调研报告》&#xff0c;肠道问题逐渐年轻化&#xff0c;约90%的国人都会遇到肠道问题。我国肠胃终端产品持续热销&#xff0c;根据2021年淘宝天猫全年益生菌保健品/功能食品市场规模&#xff0c;销售额达63.2亿元&#xff1b;目前益生菌类…

Unity减少发布打包文件的体积——获取精灵图片的信息限制它的大小

一、起因 一个工程&#xff0c;打包成webGL且压缩成zip文件后&#xff0c;接近400M&#xff0c;后来把大的精灵图片设置最大尺寸&#xff0c;降低大小后&#xff0c;再次发布&#xff0c;zip文件缩减到250M 二、如何一键获得工程里面的精灵图片信息 三、获取精灵图片信息 1、…

智能工单系统的报修流程是怎样的?工单管理系统有什么作用?

“的修”智能工单管理系统适用于多个行业&#xff0c;包括学校、医院、酒店、企事业单位和社区物业。它基于微信小程序平台和APP开发&#xff0c;支持实现故障报修、报修状态查询以及服务评价等功能。用户可以轻松使用微信进行报修&#xff0c;以及查询报修的进度、状态和对服务…

【Linux从入门到精通】多线程 | 线程互斥(互斥锁)

上篇文章我们对线程 | 线程介绍&线程控制介绍后&#xff0c;本篇文章将会对多线程中的线程互斥与互斥锁的概念进行详解。同时结合实际例子解释了可重入与不被重入函数、临界资源与临界区和原子性的概念。希望本篇文章会对你有所帮助。 文章目录 引入 一、重入与临界 1、1 可…

网络安全深入学习第一课——热门框架漏洞(RCE-命令执行)

文章目录 一、RCE二、命令执行/注入-概述三、命令执行-常见函数四、PHP命令执行-常见函数1、exec&#xff1a;2、system3、passthru4、shell_exec5、反引号 backquote 五、PHP命令执行-常见函数总结六、命令执行漏洞成因七、命令执行漏洞利用条件八、命令执行漏洞分类1、代码层…