线性代数的本质(一)——向量空间

news2024/12/22 23:00:05

文章目录

  • 向量空间
    • 向量及其性质
    • 基与维数
    • 向量的坐标运算

《线性代数的本质》 - 3blue1brown
高中数学A版选修4-2 矩阵与变换
《线性代数及其应用》(第五版)
《高等代数简明教程》- 蓝以中

向量空间

In the beginning Grant created the space. And Grant said, Let there be vector: and there was vector.

向量及其性质

三维几何空间中的一个有向线段称为向量(vector)。本文统一用 a , b , c , k , λ a,b,c,k,\lambda a,b,c,k,λ 表示标量,小写黑体字母 u , v , w , a , b , x \mathbf u,\mathbf v,\mathbf w,\mathbf a,\mathbf b,\mathbf x u,v,w,a,b,x 表示向量。

向量通常定义两种运算:加法和数乘。加法遵循三角形法则(平行四边形法则),数乘被称为缩放(scaling)。运算法则如下图

请添加图片描述

性质:根据向量的几何性质可证明向量的加法和数乘满足以下八条性质:

  1. 加法交换律: v + w = w + v \mathbf v+\mathbf w=\mathbf w+\mathbf v v+w=w+v
  2. 加法结合律: u + ( v + w ) = ( u + v ) + w \mathbf u+(\mathbf v+\mathbf w)=(\mathbf u+\mathbf v)+\mathbf w u+(v+w)=(u+v)+w
  3. 加法单位元: ∃ 0 ∈ V ,   0 + v = v \exists 0\in V,\ 0+\mathbf v=\mathbf v ∃0V, 0+v=v
  4. 加法逆元: ∃ ( − v ) ∈ V ,   v + ( − v ) = 0 \exists (-\mathbf v)\in V,\ \mathbf v+(-\mathbf v)=0 (v)V, v+(v)=0
  5. 数乘结合律: a ( b v ) = ( a b ) v a(b\mathbf v)=(ab)\mathbf v a(bv)=(ab)v
  6. 数乘分配律: a ( v + w ) = a v + a w a(\mathbf v+\mathbf w)=a\mathbf v+a\mathbf w a(v+w)=av+aw
  7. 数乘分配律: ( a + b ) v = a v + b v (a+b)\mathbf v=a\mathbf v+b\mathbf v (a+b)v=av+bv
  8. 数乘单位元: ∃ 1 ∈ F ,   1 v = v \exists 1\in\mathbb F,\ 1\mathbf v=\mathbf v ∃1F, 1v=v

向量空间是三维几何空间向高维空间的推广。线性代数中,每个向量都以坐标原点为起点,那么任何一个向量就由其终点唯一确定。从而,向量和空间中的点一一对应。因此,空间也可以看成由所有向量组成的集合,并且集合中的元素可以进行加法和数乘运算。于是,便有了向量空间的抽象定义。

向量空间: 设 V V V n n n 维向量的非空集合 F \mathbb F F 是一个数域,若 V V V 对于向量的加法和数乘两种运算封闭,那么称集合 V V V 为数域 F F F 上的向量空间(vector space)。所谓封闭是指

  1. ∀ v , w ∈ V ,   v + w ∈ V \forall\mathbf v,\mathbf w\in V,\ \mathbf v+\mathbf w\in V v,wV, v+wV
  2. ∀ v ∈ V , c ∈ F ,   c v ∈ V \forall\mathbf v\in V, c\in F,\ c\mathbf v\in V vV,cF, cvV

线性代数中的数域通常取全体实数,即 F = R \mathbb F=\R F=R

例如: n n n维向量的全体生成实数域上的向量空间

R n = { x = ( x 1 , x 2 , ⋯   , x n ) ∣ x 1 , x 2 , ⋯   , x n ∈ R } \R^n=\{\mathbf x=(x_1,x_2,\cdots,x_n)\mid x_1,x_2,\cdots,x_n\in\R\} Rn={x=(x1,x2,,xn)x1,x2,,xnR}

子空间:设 U U U 是向量空间 V V V 的一个非空子集,如果 U U U中的线性运算封闭,则 U U U 也是向量空间,称为 V V V子空间

基与维数

仿照解析几何的基本方法,建立一个坐标系,实现空间内的点与有序实数对一一对应,从而空间内的向量与有序实数对也一一对应,这样就可以用代数方法来研究向量的性质。

为方便建立空间的坐标系,先定义几个概念。

定义:取向量空间 V V V 内一个向量组 a 1 , a 2 , ⋯   , a r \mathbf a_1,\mathbf a_2,\cdots,\mathbf a_r a1,a2,,ar

  1. 向量 x 1 a 1 + x 2 a 2 + ⋯ + x r a r x_1\mathbf a_1+x_2\mathbf a_2+\cdots+x_r\mathbf a_r x1a1+x2a2++xrar 称为向量组的一个线性组合(linear combination)
  2. 向量组的所有线性组合构成的向量集称为由该向量组张成的空间,记作
    span { a 1 , ⋯   , a n } = { x 1 a 1 + ⋯ + x n a n ∣ x 1 , ⋯   , x n ∈ R } \text{span}\{\mathbf a_1,\cdots,\mathbf a_n\}=\{x_1\mathbf a_1+\cdots+x_n\mathbf a_n\mid x_1,\cdots,x_n\in\R\} span{a1,,an}={x1a1++xnanx1,,xnR}
    如下图,若 u , v ∈ R 3 \mathbf u,\mathbf v\in\R^3 u,vR3 不共线,则 span { u , v } \text{span}\{\mathbf u,\mathbf v\} span{u,v} R 3 \R^3 R3中包含 u , v \mathbf u,\mathbf v u,v 和原点的平面,图示

请添加图片描述3. 当且仅当系数 x 1 = x 2 = ⋯ = x r = 0 x_1=x_2=\cdots=x_r=0 x1=x2==xr=0 时,线性组合为零
x 1 a 1 + x 2 a 2 + ⋯ + x r a r = 0 x_1\mathbf a_1+x_2\mathbf a_2+\cdots+x_r\mathbf a_r=0 x1a1+x2a2++xrar=0
则称向量组线性无关(linearly independence)。反之,如果存在不全为零的数使上式成立,则称向量组线性相关(linearly dependence)。
请添加图片描述

定理:若向量 v \mathbf v v 可由线性无关的向量组 a 1 , a 2 , ⋯   , a r \mathbf a_1,\mathbf a_2,\cdots,\mathbf a_r a1,a2,,ar 线性表示,则表示系数是唯一的。

证明:设向量 v \mathbf v v 有两组表示系数
b = k 1 a 1 + k 2 a 2 + ⋯ + k r a r b = l 1 a 1 + l 2 a 2 + ⋯ + l r a r \mathbf b=k_1\mathbf a_1+k_2\mathbf a_2+\cdots+k_r\mathbf a_r \\ \mathbf b=l_1\mathbf a_1+l_2\mathbf a_2+\cdots+l_r\mathbf a_r b=k1a1+k2a2++krarb=l1a1+l2a2++lrar
则有
( k 1 − l 1 ) a 1 + ( k 1 − l 2 ) a 2 + ⋯ + ( k 1 − l r ) a r = 0 (k_1-l_1)\mathbf a_1+(k_1-l_2)\mathbf a_2+\cdots+(k_1-l_r)\mathbf a_r=0 (k1l1)a1+(k1l2)a2++(k1lr)ar=0
因为 a 1 , a 2 , ⋯   , a r \mathbf a_1,\mathbf a_2,\cdots,\mathbf a_r a1,a2,,ar 线性无关,故必有
k 1 − l 1 = k 1 − l 1 = ⋯ = k 1 − l 1 = 0 k_1-l_1=k_1-l_1=\cdots=k_1-l_1=0 k1l1=k1l1==k1l1=0
即表示系数是唯一的。

接下来,我们自然想用一组线性无关的向量来张成整个向量空间。

向量空间的基:张成向量空间 V V V的一个线性无关的向量集合称为该空间的一组(basis)。基向量组所含向量的个数,称为向量空间 V V V维数(dimension),记为 dim ⁡ V \dim V dimV

可以证明,向量空间的任意一组基的向量个数是相等的。
单由零向量组成的向量空间 { 0 } \{0\} {0}称为零空间。零空间的维数定义为零。

基定理 n n n 维向量空间的任意 n n n 个线性无关的向量构成空间的一组基。

向量的坐标运算

向量空间选定了基向量后,空间中全体向量的集合与全体有序实数组的集合之间就建立了一一 对应的关系。

坐标:设向量组 a 1 , a 2 , ⋯   , a n \mathbf a_1,\mathbf a_2,\cdots,\mathbf a_n a1,a2,,an 是线性空间 V V V 的一组基,则空间内任一向量 v ∈ V \mathbf v\in V vV 都可表示为基向量的唯一线性组合
v = x 1 a 1 + x 2 a 2 + ⋯ + x n a n \mathbf v=x_1\mathbf a_1+x_2\mathbf a_2+\cdots+x_n\mathbf a_n v=x1a1+x2a2++xnan
有序数组 x 1 , x 2 , ⋯   , x n x_1,x_2,\cdots,x_n x1,x2,,xn 称为向量 v \mathbf v v 在基 a 1 , a 2 , ⋯   , a n \mathbf a_1,\mathbf a_2,\cdots,\mathbf a_n a1,a2,,an 下的坐标,一般记作
[ x 1 x 2 ⋮ x n ] or ( x 1 , x 2 , ⋯   , x n ) \begin{bmatrix}x_1\\x_2\\\vdots\\x_n\end{bmatrix}\quad \text{or}\quad (x_1,x_2,\cdots,x_n) x1x2xn or(x1,x2,,xn)
类似于三维几何空间,由 n n n个有序数构成的向量称为 n n n维向量。

请添加图片描述

例:设 v 1 = [ 3 6 2 ] , v 2 = [ − 1 0 1 ] , x = [ 3 12 7 ] \mathbf v_1=\begin{bmatrix}3\\6\\2\end{bmatrix},\mathbf v_2=\begin{bmatrix}-1\\0\\1\end{bmatrix},\mathbf x=\begin{bmatrix}3\\12\\7\end{bmatrix} v1= 362 ,v2= 101 ,x= 3127 。判断 x \mathbf x x 是否在 H = span  { v 1 , v 2 } H=\text{span }\{\mathbf v_1,\mathbf v_2\} H=span {v1,v2} 中,如果是,求 x \mathbf x x 相对于基向量 B = { v 1 , v 2 } B=\{\mathbf v_1,\mathbf v_2\} B={v1,v2} 的坐标。

解:如果 x \mathbf x x H = span  { v 1 , v 2 } H=\text{span }\{\mathbf v_1,\mathbf v_2\} H=span {v1,v2} 中,则下列方程是有解的
c 1 [ 3 6 2 ] + c 2 [ − 1 0 1 ] = [ 3 12 7 ] c_1\begin{bmatrix}3\\6\\2\end{bmatrix}+c_2\begin{bmatrix}-1\\0\\1\end{bmatrix}=\begin{bmatrix}3\\12\\7\end{bmatrix} c1 362 +c2 101 = 3127
如果数 c 1 , c 2 c_1,c_2 c1,c2存在,则它们是 x \mathbf x x 相对于 B B B 的坐标。由初等行变换得
[ 3 − 1 3 6 0 12 2 1 7 ] → [ 1 0 2 0 1 3 0 0 0 ] \begin{bmatrix}\begin{array}{cc:c} 3&-1&3\\6&0&12\\2&1&7 \end{array}\end{bmatrix}\to \begin{bmatrix}\begin{array}{cc:c} 1&0&2\\0&1&3\\0&0&0 \end{array}\end{bmatrix} 3621013127 100010230
于是, x \mathbf x x 相对于 v 1 , v 2 \mathbf v_1,\mathbf v_2 v1,v2 的坐标
v B = [ 3 2 ] \mathbf v_B=\begin{bmatrix}3\\2\end{bmatrix} vB=[32]

有时为了区分坐标的基向量,向量 v \mathbf v v 在基 B = { b 1 , b 2 , ⋯   , b n } B=\{\mathbf b_1,\mathbf b_2,\cdots,\mathbf b_n\} B={b1,b2,,bn} 下的坐标,记作 v B \mathbf v_B vB

请添加图片描述

建立了坐标之后, V V V中抽象的向量 v \mathbf v v R n \R^n Rn中具体的数组 ( x 1 , x 2 , ⋯   , x n ) T (x_1,x_2,\cdots,x_n)^T (x1,x2,,xn)T 实现了一一对应,并且向量的线性运算也可以表示为坐标的线性运算。

v , w ∈ V \mathbf v,\mathbf w\in V v,wV,有
v = v 1 a 1 + v 2 a 2 + ⋯ + v n a n w = w 1 a 1 + w 2 a 2 + ⋯ + w n a n \mathbf v=v_1\mathbf a_1+v_2\mathbf a_2+\cdots+v_n\mathbf a_n\\ \mathbf w=w_1\mathbf a_1+w_2\mathbf a_2+\cdots+w_n\mathbf a_n v=v1a1+v2a2++vnanw=w1a1+w2a2++wnan

向量加法运算
v + w = ( v 1 + w 1 ) a 1 + ( v 2 + w 2 ) a 2 + ⋯ + ( v n + w n ) a n \mathbf v+\mathbf w=(v_1+w_1)\mathbf a_1+(v_2+w_2)\mathbf a_2+\cdots+(v_n+w_n)\mathbf a_n v+w=(v1+w1)a1+(v2+w2)a2++(vn+wn)an
即对应的坐标运算为
[ v 1 v 2 ⋮ v n ] + [ w 1 w 2 ⋮ w n ] = [ v 1 + w 1 v 2 + w 2 ⋮ v n + w n ] \begin{bmatrix}v_1\\ v_2\\ \vdots \\ v_n\end{bmatrix}+ \begin{bmatrix}w_1\\ w_2\\ \vdots \\ w_n\end{bmatrix}= \begin{bmatrix}v_1+w_1\\ v_2+w_2\\ \vdots \\ v_n+w_n\end{bmatrix} v1v2vn + w1w2wn = v1+w1v2+w2vn+wn

向量数乘运算
c v = ( c v 1 ) a 1 + ( c v 2 ) a 2 + ⋯ + ( c v n ) a n c\mathbf v=(cv_1)\mathbf a_1+(cv_2)\mathbf a_2+\cdots+(cv_n)\mathbf a_n cv=(cv1)a1+(cv2)a2++(cvn)an
即对应的坐标运算为
c [ v 1 v 2 ⋮ v n ] = [ c v 1 c v 2 ⋮ c v n ] c\begin{bmatrix}v_1\\ v_2\\ \vdots \\ v_n\end{bmatrix}= \begin{bmatrix}cv_1\\ cv_2\\ \vdots \\ cv_n\end{bmatrix} c v1v2vn = cv1cv2cvn

向量的坐标取值依托于坐标系的基向量。选取的基向量不同,其所对应的坐标值就不同。当然,基向量自身的坐标总是:

e 1 = [ 1 0 ⋮ 0 ] , e 2 = [ 0 1 ⋮ 0 ] , ⋯   , e n = [ 0 0 ⋮ 1 ] , \mathbf e_1=\begin{bmatrix}1\\0\\\vdots\\0\end{bmatrix},\quad \mathbf e_2=\begin{bmatrix}0\\1\\\vdots\\0\end{bmatrix},\quad \cdots,\quad \mathbf e_n=\begin{bmatrix}0\\0\\\vdots\\1\end{bmatrix},\quad e1= 100 ,e2= 010 ,,en= 001 ,
这种坐标形式通常称为标准向量组(或单位坐标向量组)。

总之,在 n n n维向量空间 V n V_n Vn 中任取一组基,则 V n V_n Vn 中的向量与 R n \R^n Rn 中的数组之间就有一一对应的关系,且这个对应关系保持线性组合(线性运算)的一一对应。接下来我们将默认使用标准坐标系:坐标原点为 O O O,基向量组为 e 1 , e 2 , ⋯   , e n \mathbf e_1,\mathbf e_2,\cdots,\mathbf e_n e1,e2,,en后续将对向量实体和坐标不做区分

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1012110.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

一文了解气象观测站是什么?

一、气象观测站的定义 气象观测站是一种专门负责观测、记录气象数据的设施,包括风向、风速、温度、湿度、气压、降水量等多个气象要素。这些数据不仅对科研和预报具有重要意义,还对我们的日常生活有着极大的影响。 二、气象观测站的种类 气象观测站根…

Vue3+Ts中使用Jquery

1、安装jquery:npm i jquery --save 2、在vue.config.js文件中添加如下代码: const { defineConfig } require(vue/cli-service) const webpack require(webpack)module.exports defineConfig({configureWebpack: {plugins: [// 配置jQuerynew webp…

蓝桥杯打卡Day9

文章目录 直角三角形最长平衡串 一、直角三角形IO链接 本题思路:本题就是利用欧几里得距离求解即可。 #include <bits/stdc.h>int main() {std::ios::sync_with_stdio(false);std::cin.tie(nullptr);std::cout.tie(nullptr);int T;std::cin>>T;while(T--){int x…

一键搭建免费eXtplorer在线文件管理器,远程登录实现文件随身存储

文章目录 1. 前言2. eXtplorer网站搭建2.1 eXtplorer下载和安装2.2 eXtplorer网页测试2.3 cpolar的安装和注册 3.本地网页发布3.1.Cpolar云端设置3.2.Cpolar本地设置 4.公网访问测试5.结语 1. 前言 通过互联网传输文件&#xff0c;是互联网最重要的应用之一&#xff0c;无论是…

利用红黑树封装map和set

目录 一、正向迭代器1.1 operator1.2 operator--1.3 参考代码 二、反向迭代器三、封装set四、封装map五、底层红黑树的实现 一、正向迭代器 我们之前vector&#xff0c;list这些都是容器的迭代器都是简单的指针或者_node_node->next这样的&#xff0c;那是因为它们要么是连…

数据可视化:揭示隐藏信息的强大工具

&#x1f482; 个人网站:【工具大全】【游戏大全】【神级源码资源网】&#x1f91f; 前端学习课程&#xff1a;&#x1f449;【28个案例趣学前端】【400个JS面试题】&#x1f485; 寻找学习交流、摸鱼划水的小伙伴&#xff0c;请点击【摸鱼学习交流群】 引言 数据可视化是将数…

WebGL透视投影

目录 透视投影 透视投影可视空间 可视空间构造效果图 Matrix4.setPerspective&#xff08;&#xff09; 三角形与可视化空间的相对位置 示例代码 代码详解 示例效果 投影矩阵的作用 透视投影矩阵对物体进行了两次变换 透视投影变换示意图 透视投影 在透视投影下&…

华为云云耀云服务器L实例评测|拉取创建canal镜像配置相关参数 搭建canal连接MySQL数据库 spring项目应用canal初步

前言 最近华为云云耀云服务器L实例上新&#xff0c;也搞了一台来玩&#xff0c;本篇博客介绍如何在华为云上部署canal的docker镜像&#xff0c;以及在spring项目中的初步应用。 其他相关的华为云云耀云服务器L实例评测文章列表如下&#xff1a; 初始化配置SSH连接 & 安装…

IntelliJ IDEA使用_常用快捷键(windows版)

文章目录 版本说明搜索操作层级关系查看光标选择代码定位代码操作Git操作编辑器操作 版本说明 当前的IntelliJ IDEA 的版本是2021.2.2&#xff08;下载IntelliJ IDEA&#xff09; ps&#xff1a;不同版本一些图标和设置位置可能会存在差异&#xff0c;但应该大部分都差不多。…

C++ PrimerPlus 复习 第四章 复合类型(上)

第一章 命令编译链接文件 make文件 第二章 进入c 第三章 处理数据 第四章 复合类型 &#xff08;上&#xff09; 文章目录 创建和使用数组&#xff1b;**声明语句中初始化数组元素。****使用大括号的初始化&#xff08;列表初始化&#xff09;** 字符串创建和使用C风格字符…

好用免费的链接转二维码

能把链接等转成二维码的形式 &#xff0c;并且是完全免费的 &#xff0c;超级好用&#xff1a;草料网址二维码生成器 https://cli.im/url?3f07d81d705e31db2dcde5ca2feeece8 测试了博客的链接转成了二维码 &#xff0c;很好用

(入门向)面向萌新的算法比赛入门指南

什么是算法 算法是指解决问题或完成特定任务的一系列明确指令或步骤集合。它是一个定义良好、逐步执行的操作序列&#xff0c;用于将输入转换为输出。算法可用于计算、数据处理、自动化控制、问题解决等各个领域。 算法通常由一系列简单的操作组成&#xff0c;这些操作可以是…

Java基于SpringBoot的逍遥大药房管理平台

博主介绍&#xff1a;✌程序员徐师兄、7年大厂程序员经历。全网粉丝30W,Csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ 大家好&#xff0c;我是程序员徐师兄、今天给大家谈谈基于android的app开发毕设题目&#xff0c;以及基于an…

GIS前端编程—视频展示

GIS前端编程—视频展示 视频展示1. 互联网公共地图服务开放平台2. 开源GIS服务平台 得益于互联网的快速发展&#xff0c;WebGIS发展迅猛&#xff0c;其开发工具与开发平台也呈现出百花齐放之势。目前&#xff0c;涌现出了大量的WebGIS二次开发产品。在互联网方向上&#xff0c;…

【Springboot】整合kafka

目录 安装zookeeperjdk安装zookeeper安装 安装kafka&#xff08;非集群&#xff09;springboot项目整合配置 安装zookeeper jdk安装 环境准备&#xff1a;CentOS7&#xff0c;jdk1.8 步骤如下&#xff1a; 下载自己需要的版本 这里使用的jdk1.8&#xff0c;获取链接如下 链接…

Maxwell 概述、安装、数据同步【一篇搞定】!

文章目录 什么是 Maxwell&#xff1f;Maxwell 输出格式Maxwell 工作原理Maxwell 安装Maxwell 历史数据同步Maxwell 增量数据同步 什么是 Maxwell&#xff1f; Maxwell 在大数据领域通常指的是一个用于数据同步和数据捕获的开源工具&#xff0c;由美国 Zendesk 开源&#xff0c…

千巡翼X1协调转弯功能

近年来&#xff0c;随着技术的飞速发展&#xff0c;无人机航测已成为现代测绘领域的一项重要应用。 无人机的出现极大地提高了航测的效率和精度&#xff0c;极大地减少了人力资源的投入。通过搭载各种高精度的航测仪器和传感器&#xff0c;无人机可以在短时间内完成大面积的航…

使用vscode以16进制方式查看bin文件内容

简介 方便对bin文件内容进行分析。 使用 VSCODE&#xff1a;插件下载 Hex Editor,下载完后使用vscode打开bin文件。 使用快捷键CtrlShiftP&#xff0c; 并在上方命令框输入>hex 选择 结果如下

微信小程序隐私授权

微信开发者平台新公告&#xff1a;2023年9月15之后&#xff0c;隐私协议将被启用&#xff0c;所以以后的小程序都要加上隐私协议的内容提示用户&#xff0c; 首先设置好隐私协议的内容&#xff0c;登录小程序的开发者后台&#xff0c;在设置--》服务内容声明--》用户隐私保护指…

前端JavaScript入门到精通,javascript核心进阶ES6语法、API、js高级等基础知识和实战 —— JS基础(一)

&#xfecc;&#xfecc;&#xfecc;&#xfecc;♡‎&#xfecc;&#xfecc;&#xfecc;&#xfecc;♡‎‎&#xfecc;&#xfecc;&#xfecc;&#xfecc;♡‎&#xfecc;&#xfecc;&#xfecc;&#xfecc;♡&#xfecc;&#xfecc;&#xfecc;&#xfecc;…