JVM GC垃圾回收

news2024/10/5 20:16:46

一、GC垃圾回收算法

https://note.youdao.com/yws/public/resource/21b50d8595b245f7d7d01a6bbfefe6c4/xmlnote/07A156E7F69C45FC9DA4D96300C7EBDB/95317

标记-清除算法

算法分为“标记”和“清除”阶段:标记存活的对象, 统一回收所有未被标记的对象(一般选择这种);也可以反过来,标记出所有需要回收的对象,在标记完成后统一回收所有被标记的对象 。它是最基础的收集算法,比较简单,但是会带来两个明显的问题:

  1. 效率问题 (如果需要标记的对象太多,效率不高)
  2. 空间问题(标记清除后会产生大量不连续的碎片)
https://note.youdao.com/yws/public/resource/21b50d8595b245f7d7d01a6bbfefe6c4/xmlnote/8776D98D7914406FBA66837258CBDEF5/94592

标记-整理算法

根据老年代的特点特出的一种标记算法,标记过程仍然与“标记-清除”算法一样,但后续步骤不是直接对可回收对象回收,而是让所有存活的对象向一端移动,然后直接清理掉端边界以外的内存。

https://note.youdao.com/yws/public/resource/21b50d8595b245f7d7d01a6bbfefe6c4/xmlnote/9327E5C7D8A94F9086CDDB67A1EA57CC/94590

复制算法

为了解决效率问题,“复制”收集算法出现了。它可以将内存分为大小相同的两块,每次使用其中的一块。当这一块的内存使用完后,就将还存活的对象复制到另一块去,然后再把使用的空间一次清理掉。这样就使每次的内存回收都是对内存区间的一半进行回收。

https://note.youdao.com/yws/public/resource/21b50d8595b245f7d7d01a6bbfefe6c4/xmlnote/C3312F65B0364828BA6A03DF9D3B60A8/95776

分代收集算法

当前虚拟机的垃圾收集都采用分代收集算法,这种算法没有什么新的思想,只是根据对象存活周期的不同将内存分为几块。一般将java堆分为新生代和老年代,这样我们就可以根据各个年代的特点选择合适的垃圾收集算法。

比如在新生代中,每次收集都会有大量对象(近99%)死去,所以可以选择复制算法,只需要付出少量对象的复制成本就可以完成每次垃圾收集。而老年代的对象存活几率是比较高的,而且没有额外的空间对它进行分配担保,所以我们必须选择“标记-清除”或“标记-整理”算法进行垃圾收集。注意,“标记-清除”或“标记-整理”算法会比复制算法慢10倍以上。

二、GC垃圾回收器实现

常见的GC回收器的种类:

(1)serial回收器:在GC回收的时候停掉工作线程,他是一个串行的回收器;

(2)parallel回收器:在GC回收的时候停掉工作线程,这种GC回收器是并发执行的;

(3)CMS,他的全程是concurrent mark sweep,他的主要优势是在GC回收的时候不需要全程stop the world;

(4)G1:这个是从JDK7后推出的新的GC,适应大型并发场景;

image-20230909234715677

衡量GC的指标主要是吞吐量、暂停时间。

  1. 吞吐量:是CPU用于运行用户代码的时间与CPU总消耗时间的比值,即吞吐量 = 运行用户代码时间 /(运行用户代码时间+垃圾收集时间)。比如:虚拟机总共运行了100分钟,其中垃圾收集花掉1分钟,那吞吐量就是99%。
  2. 暂停时间:是指一个时间段内应用程序线程暂停,让GC线程执行的状态。例如,GC期间100毫秒的暂停时间意味着在这100毫秒期间内没有应用程序线程是活动的。
  3. 回收效率:是指一次GC能真正回收的垃圾对象的数量,以及能够回收的垃圾对象占实际垃圾对象的比例。

Serial收集器(-XX:+UseSerialGC -XX:+UseSerialOldGC)

Serial(串行)收集器是最基本、历史最悠久的垃圾收集器了。大家看名字就知道这个收集器是一个单线程收集器了。它的 “单线程” 的意义不仅仅意味着它只会使用一条垃圾收集线程去完成垃圾收集工作,更重要的是它在进行垃圾收集工作的时候必须暂停其他所有的工作线程( "Stop The World" ),直到它收集结束。

新生代采用复制算法,老年代采用标记-整理算法。

0

虚拟机的设计者们当然知道Stop The World带来的不良用户体验,所以在后续的垃圾收集器设计中停顿时间在不断缩短(仍然还有停顿,寻找最优秀的垃圾收集器的过程仍然在继续)。

Parallel收集器(-XX:+UseParallelGC(年轻代),-XX:+UseParallelOldGC(老年代))

Parallel收集器其实就是Serial收集器的多线程版本,除了使用多线程进行垃圾收集外,其余行为(控制参数、收集算法、回收策略等等)和Serial收集器类似。默认的收集线程数跟cpu核数相同,当然也可以用参数(-XX:ParallelGCThreads)指定收集线程数,但是一般不推荐修改。

Parallel Scavenge收集器关注点是吞吐量(高效率的利用CPU)。CMS等垃圾收集器的关注点更多的是用户线程的停顿时间(提高用户体验)。所谓吞吐量就是CPU中用于运行用户代码的时间与CPU总消耗时间的比值。 Parallel Scavenge收集器提供了很多参数供用户找到最合适的停顿时间或最大吞吐量,如果对于收集器运作不太了解的话,可以选择把内存管理优化交给虚拟机去完成也是一个不错的选择。

新生代采用复制算法,老年代采用标记-整理算法。

https://note.youdao.com/yws/public/resource/21b50d8595b245f7d7d01a6bbfefe6c4/xmlnote/03C4D01AD9744284A399279A319DC5E6/92873

CMS收集器(-XX:+UseConcMarkSweepGC(old))

CMS(Concurrent Mark Sweep)收集器是一种以获取最短回收停顿时间为目标的收集器。它非常符合在注重用户体验的应用上使用,它是HotSpot虚拟机第一款真正意义上的并发收集器,它第一次实现了让垃圾收集线程与用户线程(基本上)同时工作。

从名字中的Mark Sweep这两个词可以看出,CMS收集器是一种 “标记-清除”算法实现的,它的运作过程相比于前面几种垃圾收集器来说更加复杂一些。整个过程分为四个步骤:

  1. 初始标记: 暂停所有的其他线程(STW),并记录下gc roots直接能引用的对象,速度很快。
  2. 并发标记: 并发标记阶段就是从GC Roots的直接关联对象开始遍历整个对象图的过程, 这个过程耗时较长但是不需要停顿用户线程, 可以与垃圾收集线程一起并发运行。因为用户程序继续运行,可能会有导致已经标记过的对象状态发生改变。
  3. 重新标记: 重新标记阶段就是为了修正并发标记期间因为用户程序继续运行而导致标记产生变动的那一部分对象的标记记录(主要是处理漏标问题),这个阶段的停顿时间一般会比初始标记阶段的时间稍长,远远比并发标记阶段时间短。
  4. 并发清理: 开启用户线程,同时GC线程开始对未标记的区域做清扫。这个阶段如果有新增对象会被标记为黑色不做任何处理。

0

从它的名字就可以看出它是一款优秀的垃圾收集器,主要优点:并发收集、低停顿。但是它有下面几个明显的缺点:

  1. 对CPU资源敏感(会和服务抢资源);
  2. 无法处理浮动垃圾(在并发标记和并发清理阶段又产生垃圾,这种浮动垃圾只能等到下一次gc再清理了);
  3. 它使用的回收算法-“标记-清除”算法会导致收集结束时会有大量空间碎片产生。

G1收集器(-XX:+UseG1GC)

G1回收器会将区域划分为region,每个region可以是新生代也可以是老年代,通过控制对region的回收,做到对垃圾回收导致的STW可控。垃圾回收的阶段前3个阶段和CMS一致,只是最后一个节点需要通过混合清除来回收新生代和老年代所有的对象:

  1. 初始标记;标记GC root对象,需要暂停所有用户线程,该过程会引发STW;
  2. 并发标记;标记GC root可达的对象。
  3. 最终标记;标记在并发标记阶段产生的需回收对象。
  4. 筛选回收:对各个Region的回收成本和价值进行排序,根据用心要求的GC停顿时间来选择需要GC的Region。

0E8450B5-984A-45DF-BEE6-6ABE93D82302

G1的优缺点分别为:

  1. 优点:(1)并发处理效率高;(2)整体停顿STW的时间可控;(3)新生掉和老年代都分为逻辑上的region,通过GC的复制算法解决内存碎片的问题;
  2. 缺点:引入了Remembered Set来保存内存引用信息,所以增加了内存占用,所以G1一般在大内存的服务端环境使用,起步内存大小为8G。

GC垃圾回收器对比和总结

  1. 选择GC主要考虑的是使用场景,一般嵌入式、内存较小的选择Serial收集器;
  2. 对于需求吞吐量大的常见可以选择Parallel收集器;
  3. 对于需求时延短的场景可以选择CMS收集器;
  4. G1回收器整体是平衡了降低时延和增大吞吐量的要求,适用于海量并发场景,对系统资源也有较高的要求;

三、GC垃圾回收器的常见机制

大对象直接进入老年代

大对象就是需要大量连续内存空间的对象(比如:字符串、数组)。JVM参数 -XX:PretenureSizeThreshold 可以设置大对象的大小,如果对象超过设置大小会直接进入老年代,不会进入年轻代,这个参数只在 Serial 和ParNew两个收集器下有效。

比如设置JVM参数:-XX:PretenureSizeThreshold=1000000 (单位是字节) -XX:+UseSerialGC ,再执行下上面的第一个程序会发现大对象直接进了老年代。这样做的原因是为了避免为大对象分配内存时的复制操作而降低效率。

长期存活的对象将进入老年代

既然虚拟机采用了分代收集的思想来管理内存,那么内存回收时就必须能识别哪些对象应放在新生代,哪些对象应放在老年代中。为了做到这一点,虚拟机给每个对象一个对象年龄(Age)计数器。

如果对象在 Eden 出生并经过第一次 Minor GC 后仍然能够存活,并且能被 Survivor 容纳的话,将被移动到 Survivor 空间中,并将对象年龄设为1。对象在 Survivor 中每熬过一次 MinorGC,年龄就增加1岁,当它的年龄增加到一定程度(默认为15岁,CMS收集器默认6岁,不同的垃圾收集器会略微有点不同),就会被晋升到老年代中。对象晋升到老年代的年龄阈值,可以通过参数 -XX:MaxTenuringThreshold 来设置。

批量对象动态年龄判断

当前放对象的Survivor区域里(其中一块区域,放对象的那块s区),一批对象的总大小大于这块Survivor区域内存大小的50%(-XX:TargetSurvivorRatio可以指定),那么此时大于等于这批对象年龄最大值的对象,就可以直接进入老年代了,例如Survivor区域里现在有一批对象,年龄1+年龄2+年龄n的多个年龄对象总和超过了Survivor区域的50%,此时就会把年龄n(含)以上的对象都放入老年代。这个规则其实是希望那些可能是长期存活的对象,尽早进入老年代。

批量对象动态年龄判断机制一般是在minor gc之后触发的。

老年代空间分配担保机制

年轻代每次minor gc之前JVM都会计算下老年代剩余可用空间,如果这个可用空间小于年轻代里现有的所有对象大小之和(包括垃圾对象),就会看一个“-XX:-HandlePromotionFailure”(jdk1.8默认就设置了)的参数是否设置了,如果有这个参数,就会看看老年代的可用内存大小,是否大于之前每一次minor gc后进入老年代的对象的平均大小。

如果上一步结果是小于或者之前说的参数没有设置,那么就会触发一次Full gc,对老年代和年轻代一起回收一次垃圾,如果回收完还是没有足够空间存放新的对象就会发生"OOM",当然,如果minor gc之后剩余存活的需要挪动到老年代的对象大小还是大于老年代可用空间,那么也会触发full gc,full gc完之后如果还是没有空间放minor gc之后的存活对象,则也会发生“OOM”。

老年代空间分配担保机制判断是在minor gc之前触发的。

本文由博客一文多发平台 OpenWrite 发布!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1002321.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

二分搜索树节点删除(Java 实例代码)

目录 二分搜索树节点删除 src/runoob/binary/BSTRemove.java 文件代码: 二分搜索树节点删除 本小节介绍二分搜索树节点的删除之前,先介绍如何查找最小值和最大值,以及删除最小值和最大值。 以最小值为例(最大值同理&#xff09…

在 Simscape Electrical 中对两区 MVDC 电动船的建模和仿真(Simulink实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…

Linux Centos7内网服务器离线升级openssh9.3

内网服务器需要升级openssh,被折磨了一整天,觉得有必要记录一下,不然对不起这差点崩溃的一天,主要的几个难点就是不能yum一键安装,需要自己找到对应的依赖版本然后通过堡垒机上传到内网,还有就是服务器很干…

无涯教程-JavaScript - ISPMT函数

描述 ISPMT函数计算在特定投资期间支付的利息。提供此功能是为了与Lotus 1-2-3兼容。 语法 ISPMT (rate, per, nper, pv)争论 Argument描述Required/OptionalRateThe interest rate for the investment.RequiredPerThe period for which you want to find the interest, an…

vue-puzzle-vcode完成验证码拖拽

一、 vue-puzzle-vcode插件【推荐】 GitHub地址&#xff1a;beeworkshop/vue-puzzle-vcode 1、安装vue-puzzle-vcode cnpm i -S vue-puzzle-vcode2、实现代码 <template><div><Vcode :show"isShow" success"success" close"close&…

7年经验之谈 —— Web测试是什么,有何特点?

Web测试是指对Web应用程序进行验证和评估的过程&#xff0c;以确保其功能、性能和安全性符合预期。 Web测试具体包括以下几个方面的内容&#xff1a; 功能测试&#xff1a;验证Web应用程序是否按照需求规格说明书中定义的功能正常工作。功能测试包括输入验证、表单提交、页面…

【Flutter】Flutter 使用 pull_to_refresh 实现下拉刷新和上拉加载

【Flutter】Flutter 使用 pull_to_refresh 实现下拉刷新和上拉加载 文章目录 一、前言二、pull_to_refresh 包简介三、安装与基本使用四、高级功能与配置五、实际业务中的用法六、完整示例七、总结 一、前言 你好&#xff01;在移动开发中&#xff0c;下拉刷新和上拉加载是非常…

【数据结构】双向链表详解

当我们学习完单链表后&#xff0c;双向链表就简单的多了&#xff0c;双向链表中的头插&#xff0c;尾插&#xff0c;头删&#xff0c;尾删&#xff0c;以及任意位置插&#xff0c;任意位置删除比单链表简单&#xff0c;今天就跟着小张一起学习吧&#xff01;&#xff01; 双向链…

Pytorch Advanced(一) Generative Adversarial Networks

生成对抗神经网络GAN&#xff0c;发挥神经网络的想象力&#xff0c;可以说是十分厉害了 参考 1、AI作家 2、将模糊图变清晰(去雨&#xff0c;去雾&#xff0c;去抖动&#xff0c;去马赛克等)&#xff0c;这需要AI具有“想象力”&#xff0c;能脑补情节&#xff1b; 3、进行数…

JavaScript Promise 的真正工作原理

Promise 是处理异步代码的一种技术,也称为脱离回调地狱的头等舱门票。 3 承诺状态 待定状态 已解决状态 拒绝状态 理解 JavaScript Promis 什么是承诺? 通常,承诺被定义为最终可用的值的代理。 Promise 多年来一直是 JavaScript 的一部分(在 ES2015 中标准化并引入)。最…

【数据结构】前言概况 - 树

&#x1f6a9;纸上得来终觉浅&#xff0c; 绝知此事要躬行。 &#x1f31f;主页&#xff1a;June-Frost &#x1f680;专栏&#xff1a;数据结构 &#x1f525;该文章针对树形结构作出前言&#xff0c;以保证可以对树初步认知。 目录&#xff1a; &#x1f30d;前言:&#x1f3…

Python语义分割与街景识别(4):程序运行

前言 本文主要用于记录我在使用python做图像识别语义分割训练集的过程&#xff0c;由于在这一过程中踩坑排除BUG过多&#xff0c;因此也希望想做这部分内容的同学们可以少走些弯路。 本文是python语义分割与街景识别第四篇&#xff0c;关于程序的内容&#xff0c;也是差不多最…

【Unity编辑器扩展】| GameView面板扩展

前言【Unity编辑器扩展】| GameView面板扩展未运行时在Game视图进行绘制总结前言 前面我们介绍了Unity中编辑器扩展的一些基本概念及基础知识,还有编辑器扩展中用到的相关特性Attribute介绍。后面就来针对Uniity编辑器扩展中比较常用的模块进行学习介绍。本文就来详细介绍一下…

JAVA版的数据结构——链表

目录 1.单向不带头链表 1.1 链表的概念及结构 1.2 代码部分 1.3 完整的全部代码 2. 双向不带头链表 2.1 代码部分 2.2 完整的代码 3. MySingleList与MyLinkedList代码上的区别 4. LinkedList的使用 4.1 什么是LinkedList 4.2 LinkedList的使用 4.2.1 LinkedList的构…

【数据结构】堆的向上调整和向下调整以及相关方法

&#x1f490; &#x1f338; &#x1f337; &#x1f340; &#x1f339; &#x1f33b; &#x1f33a; &#x1f341; &#x1f343; &#x1f342; &#x1f33f; &#x1f344;&#x1f35d; &#x1f35b; &#x1f364; &#x1f4c3; 文章目录 一、堆的概念二、堆的性质…

github上创建分支并合并到master

github上创建分支并合并到master 目录概述需求&#xff1a; 设计思路实现思路分析1.创建分支2.commit changes3.create pull request按钮4.网页解析器5.数据处理器 参考资料和推荐阅读 Survive by day and develop by night. talk for import biz , show your perfect code,ful…

[deeplearning]深度学习框架torch的概念以及数学内容

&#xff08;提前声明&#xff1a;这边的操作系统为ubuntn22.04,至于window上如何进行安装和导入按这边不是很理解&#xff09; &#xff08;另外代码样例基本不使用notebook&#xff0c;paddle等等在线工具&#xff0c;而是使用本机安装好的python环境&#xff0c;和pytorch框…

IDEA中maven的设置以及相关功能

Maven 项目介绍 学习前提 相对于传统的项目&#xff0c;Maven 下管理和构建的项目真的非常好用和简单&#xff0c;所以这里也强调下&#xff0c;尽量使用此类工具进行项目构建。 ## Maven 常用设置介绍 如上图标注 1 所示&#xff0c;我们可以指定我们本地 Maven 的安装目录…

模块化开发_groupby查询think PHP5.1

要求按照分类的区别打印出不同类别的数据计数 如张三&#xff0c;做了6件事情 这里使用原生查询先测试 SELECT cate_id, COUNT(*) AS order_count FROM tp_article GROUP BY cate_id;成功 然后项目中实现 public function ss(){$sql "SELECT cate_id, COUNT(*) AS orde…

RCNA 锐捷培训

第一章 网络基础入门 1.1 OSI参考模型及TCP/IP协议栈 数据是如何传输的&#xff1f; 数据在计算机网络中传输通常依赖于TCP/IP协议模型。 什么是网络&#xff1f; 网络是一种连接多个计算机、设备或系统的通信基础设施&#xff0c;其目的是实现资源共享、信息传递、接收和共享…