分类预测 | MATLAB实现WOA-CNN-BiGRU鲸鱼算法优化卷积双向门控循环单元数据分类预测

news2024/11/17 7:32:12

分类预测 | MATLAB实现WOA-CNN-BiGRU鲸鱼算法优化卷积双向门控循环单元数据分类预测

目录

    • 分类预测 | MATLAB实现WOA-CNN-BiGRU鲸鱼算法优化卷积双向门控循环单元数据分类预测
      • 分类效果
      • 基本描述
      • 模型描述
      • 程序设计
      • 参考资料

分类效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本描述

1.Matlab实现WOA-CNN-BiGRU多特征分类预测,多特征输入模型,运行环境Matlab2020b及以上;
2.基于鲸鱼算法(WOA)优化卷积神经网络-双向门控循环单元(CNN-BiGRU)分类预测,优化参数为,学习率,隐含层节点,正则化参数;
3.多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用;
程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图;
4.data为数据集,输入12个特征,分四类;运行主程序即可,其余为函数文件,无需运行,可在下载区获取数据和程序内容。

模型描述

CNN 是一种前馈型神经网络,广泛应用于深度学习领域,主要由卷积层、池化层和全连接层组成,输入特征向量可以为多维向量组,采用局部感知和权值共享的方式。卷积层对原始数据提取特征量,深度挖掘数据的内在联系,池化层能够降低网络复杂度、减少训练参数,全连接层将处理后的数据进行合并,计算分类和回归结果。
BiGRU是LSTM的一种改进模型,将遗忘门和输入门集成为单一的更新门,同时混合了神经元状态和隐藏状态,可有效地缓解循环神经网络中“梯度消失”的问题,并能够在保持训练效果的同时减少训练参数。

程序设计

  • 完整程序和数据获取方式私信博主回复MATLAB实现WOA-CNN-BiGRU鲸鱼算法优化卷积双向门控循环单元数据分类预测
% The Whale Optimization Algorithm
function [Best_Cost,Best_pos,curve]=WOA(pop,Max_iter,lb,ub,dim,fobj)

% initialize position vector and score for the leader
Best_pos=zeros(1,dim);
Best_Cost=inf; %change this to -inf for maximization problems


%Initialize the positions of search agents
Positions=initialization(pop,dim,ub,lb);

curve=zeros(1,Max_iter);

t=0;% Loop counter

% Main loop
while t<Max_iter
    for i=1:size(Positions,1)
        
        % Return back the search agents that go beyond the boundaries of the search space
        Flag4ub=Positions(i,:)>ub;
        Flag4lb=Positions(i,:)<lb;
        Positions(i,:)=(Positions(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;
        
        % Calculate objective function for each search agent
        fitness=fobj(Positions(i,:));
        
        % Update the leader
        if fitness<Best_Cost % Change this to > for maximization problem
            Best_Cost=fitness; % Update alpha
            Best_pos=Positions(i,:);
        end
        
    end
    
    a=2-t*((2)/Max_iter); % a decreases linearly fron 2 to 0 in Eq. (2.3)
    
    % a2 linearly dicreases from -1 to -2 to calculate t in Eq. (3.12)
    a2=-1+t*((-1)/Max_iter);
    
    % Update the Position of search agents 
    for i=1:size(Positions,1)
        r1=rand(); % r1 is a random number in [0,1]
        r2=rand(); % r2 is a random number in [0,1]
        
        A=2*a*r1-a;  % Eq. (2.3) in the paper
        C=2*r2;      % Eq. (2.4) in the paper
        
        
        b=1;               %  parameters in Eq. (2.5)
        l=(a2-1)*rand+1;   %  parameters in Eq. (2.5)
        
        p = rand();        % p in Eq. (2.6)
        
        for j=1:size(Positions,2)
            
            if p<0.5   
                if abs(A)>=1
                    rand_leader_index = floor(pop*rand()+1);
                    X_rand = Positions(rand_leader_index, :);
                    D_X_rand=abs(C*X_rand(j)-Positions(i,j)); % Eq. (2.7)
                    Positions(i,j)=X_rand(j)-A*D_X_rand;      % Eq. (2.8)
                    
                elseif abs(A)<1
                    D_Leader=abs(C*Best_pos(j)-Positions(i,j)); % Eq. (2.1)
                    Positions(i,j)=Best_pos(j)-A*D_Leader;      % Eq. (2.2)
                end
                
            elseif p>=0.5
              
                distance2Leader=abs(Best_pos(j)-Positions(i,j));
                % Eq. (2.5)
                Positions(i,j)=distance2Leader*exp(b.*l).*cos(l.*2*pi)+Best_pos(j);
                
            end
            
        end
    end
    t=t+1;
    curve(t)=Best_Cost;
    [t Best_Cost]
end

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1002096.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

敏捷项目管理实践及敏捷工具

​敏捷项目管理是一种基于敏捷开发方法的项目管理方式&#xff0c;它强调快速响应变化、持续交付价值和高效的团队合作。 1、确定敏捷宣言的价值观和原则&#xff0c;例如“以人为本”、“可用的软件”、“以客户为中心”、“拥抱变化”等&#xff0c;并在项目中始终遵循这些价…

二维差分---基础算法

书接上回 a二维数组是b二维数组的前缀和数组,b二维数组是a二维数组的差分数组,也就是说a[i][j]b[1][1]b[1][2] ......b[i][1] b[i][2] ...... b[i][j] ,下图是b的二维数组 如图,当你想要整个矩阵中的一个子矩阵都加上一个C,如果我们将b[x1][x2]加上C,那么a数组右下角所有的…

3.3 栈的表示和操作的实现

3.3.1 栈的类型定义 主要内容&#xff1a; 这段文字中包含了很多栈数据结构的基本概念和操作。 ### 3.3 栈的表示和操作的实现 #### 3.3.1 栈的类型定义 1. **数据对象**&#xff1a; - 定义了一个数据对象集合&#xff0c;记作 D {a1, a2, ..., an}&#xff0c;其…

一维的差分

差分的方法 差分实际上是前缀和的逆运算 ,这个关系和 积分与求导 的关系类似 例如有数组 ...... 和构造数组 ...... 我们要使得a数组是b数组的前缀和 ...... 那么该如何构造b数组呢? 令 , …

使用带有示例和代码的因式分解机的推荐系统

一、说明 在我之前的文章中&#xff0c;我讨论了推荐系统的基础知识、矩阵分解和神经协同过滤 &#xff08;NCF&#xff09;&#xff0c;您可以在下面的“我的博客”部分找到它们。接下来&#xff0c;这次我将通过示例和代码来探索因式分解机器。 将因子分解机用于推荐系统的一…

pytorch无法使用cuda

import torch # 如果pytorch安装成功即可导入 print(torch.cuda.is_available()) # 查看CUDA是否可用 print(torch.cuda.device_count()) # 查看可用的CUDA数量 print(torch.version.cuda) # 查看CUDA的版本号#False #0 #None 表明安装失败&#xff01;查看安装包&#xff1a;…

Gin框架---基础综述

目录 一&#xff1a;经典入门案例二&#xff1a;请求参数2.1: API参数2.2: URL参数2.3: 表单参数 三&#xff1a; 响应参数四&#xff1a;数据解析和绑定4.1: JSON数据解析绑定4.2: FROM表单数据解析和绑定 五&#xff1a; 路由组六&#xff1a;异步处理七&#xff1a;中间件7.…

【UE】刀光粒子效果——part1

效果 步骤 1. 打开3dsmax&#xff0c;首先新建一个管状体 转成可编辑多边形后&#xff0c;删除多余的面&#xff0c;只保留一层 选择内圈将其拉高5mm 在修改器列表中添加“UVW展开” 点击打开“UV编辑器” 选中左边所有的顶点 将其拖拽到最左边 将右边的点拖拽到最右边 关闭 “…

VR古迹复原——数字化复原圆明园,开创文化遗产保护新方式

圆明园是中国历史上一处重要的文化遗产&#xff0c;曾经被誉为“万园之园”&#xff0c;但在1860年的英法联军侵华战争中被毁。近年来&#xff0c;虚拟现实技术不断发展&#xff0c;广州华锐互动利用VR全景技术复原了圆明园&#xff0c;通过VR设备&#xff0c;人们可以在家中就…

浏览器面试题

浏览器面试题 1.常见的浏览器内核有哪些&#xff1f;2.浏览器的主要组成部分有哪些&#xff1f;3.说一说从输入URL到页面呈现发生了什么&#xff1f;4.浏览器重绘域重排的区别&#xff1f;5.CSS加载会阻塞DOM吗&#xff1f;6.JS会阻塞页面吗&#xff1f;7.说一说浏览器的缓存机…

基于ASP.NET的驾校管理系统设计与实现

摘 要 伴随国民经济的飞速发展和人民生活水平的不断提高&#xff0c;家用汽车在我国逐渐普及。面对不断增长的庞大的用户群&#xff0c;随之产生的驾驶培训行业&#xff0c;规模不断扩大。近年来&#xff0c;随着Internet的迅速发展以及网页制作技术的日臻完善&#xff0c;驾校…

win10查看并设置tomcat的jvm堆内存参数

win10查看并设置tomcat的jvm堆内存参数 查看 进入命令行 通过Winr命令输入cmd进入命令行页面 进入到jdk的bin目录 D: cd D:\Y4ECSRUN\WGQ4 Java jdk1.8.0 131\bin执行jps查看进程pid D:\Y4ECSRUN\WGQ4 Java jdk1.8.0 131\bin>jps 16528 Jps 6868 Bootstrap通过jmap查看…

【客户案例】脊叶架构(Spine-Leaf)的云化园区网络部署实践

前言 各行业数字化转型进程加快&#xff0c;作为基础设施的园区网络也面临着升级压力。为此&#xff0c;星融元通过将先进成熟的云网络建设理念引入园区场景&#xff0c;推出了“云化园区网络解决方案”&#xff0c;帮助客户网络实现架构级的深层优化。 云化园区网络解决方案介…

python 综合练习

条件&#xff1a;ML100k.data 注意&#xff1a;程序对列表进行修改&#xff0c;为避免列表索引出现问题&#xff0c;避免使用for i in range(len(data)),而使用for i in data可避免这一问题 import pickle data [] with open("ML100k.data", r) as file:for line …

从零开始的PICO教程(0) -- 教程大纲

从零开始的PICO教程&#xff08;0&#xff09; – 教程大纲 一、前言 1、写这个教程的原因 第一个原因是&#xff0c;相关教程较少。搜了搜B站和各个搜索引擎&#xff0c;感觉PICO开发这类的教程还比较少&#xff0c;遂记录一下我的学习的过程&#xff0c;为VR生态建设提供一…

左神算法之中级提升班(9)

【案例1】 【题目描述】 【思路解析】 因为它数字的范围只能为1 - n&#xff0c;然后数组范围0 - n-1&#xff0c;所以说如果没有缺失值的话&#xff0c;每个i位置应该放i 1&#xff0c;所以我们直接对每个数组完成这个操作&#xff0c;让每个i位置尽可能放i1&#xff0c;如…

C++(三)——运算符重载

运算符重载 重定义或重载大部分 C 内置的运算符就能使用自定义类型的运算符。重载的运算符是带有特殊名称的函数&#xff0c;函数名是由关键字 operator 和其后要重载的运算符符号构成的。与其他函数一样&#xff0c;重载运算符有一个返回类型和一个参数列表。不能为了重载而重…

GeoServer 安装及使用教程

GeoServer 安装及使用教程 一、前言二、安装1. 下载和安装Java2. 下载、安装、部署GeoServer3. 启动GeoServer4. 发布数据5. 结论 一、前言 GeoServer是一个开源的地理空间数据服务器&#xff0c;可以将地图数据发布为Web服务。在本篇教程中&#xff0c;我们将介绍如何安装GeoS…

B站:AB test [下]

Focus在&#xff1a;AB Test结束后&#xff0c;如何进行显著性检验&#xff1f;&#xff08;以判断改动是否有效果&#xff09; 引入&#xff1a;Z检验和T检验 而T检验适用于 n<30 的小样本 值得注意的是&#xff1a;统计上显著并不意味着现实中显著&#xff01; e.g. 加速…

Vue面试题以及解答(持续扩展中.....)

##Vue面试题## 1.组件中通讯方式有哪些 组件中通讯有$emit&#xff0c;props&#xff0c;vuex&#xff0c;provid和inject&#xff0c;$parent/$children&#xff0c;$refs&#xff0c;全局总线时间EvenBus&#xff0c;订阅与发布模式的subscrip/publish 2.Vue2和Vue3的区别…