Fourier傅里叶变换的线性性质和位移性质
为了阐述方便, 假定在这些性质中, 凡是需要求Fourier变换的函数都满足Fourier积分定理中的条件。在证明这些性质时, 不再重述这些条件。
一、线性性质
设 F 1 ( ω ) = F [ f 1 ( t ) ] {F_1}(\omega ) = {\mathscr F}[{f_1}(t)] F1(ω)=F[f1(t)], F 2 ( ω ) = F [ f 2 ( t ) ] {F_2}(\omega ) = {\mathscr F}[{f_2}(t)] F2(ω)=F[f2(t)], α \alpha α和 β \beta β是常数,则:
F [ α f 1 ( t ) + β f 2 ( t ) ] = α F 1 ( ω ) + β F 2 ( ω ) \mathscr F\left[ {\alpha {f_1}(t) + \beta {f_2}(t)} \right] = \alpha {F_1}(\omega ) + \beta {F_2}(\omega ){\rm{ }} F[αf1(t)+βf2(t)]=αF1(ω)+βF2(ω)
这个性质表明了函数线性组合的Fourier变换等于各函数Fourier变换的线性组合. 它的证明只需根据定义就可推出.
Fourier逆变换亦具有类似的线性性质.
F
−
1
[
α
F
1
(
ω
)
+
β
F
2
(
ω
)
]
=
α
f
1
(
t
)
+
β
f
2
(
t
)
\mathscr {F^{ - 1}} \left[ {\alpha {F_1}(\omega ) + \beta {F_2}(\omega )} \right] = \alpha {f_1}(t) + \beta {f_2}(t)
F−1[αF1(ω)+βF2(ω)]=αf1(t)+βf2(t)
二、 位移性质
F [ f ( t ± t 0 ) ] = e ± j ω t 0 F [ f ( t ) ] \mathscr F\left[ {f(t \pm {t_0})} \right] = {{\rm{e}}^{ \pm {\rm{j}}\omega {t_0}}}{\mathscr F}\left[ {f(t)\,} \right] F[f(t±t0)]=e±jωt0F[f(t)]