万字长文,梳理清楚Python多线程与多进程!

news2025/1/19 10:28:30

作者丨钱魏Way

来源

https://www.biaodianfu.com/python-multi-thread-and-multi-process.html

在学习Python的过程中,有接触到多线程编程相关的知识点,先前一直都没有彻底的搞明白。今天准备花一些时间,把里面的细节尽可能的梳理清楚。

线程与进程的区别

进程(process)和线程(thread)是操作系统的基本概念,但是它们比较抽象,不容易掌握。关于多进程和多线程,教科书上最经典的一句话是“进程是资源分配的最小单位,线程是CPU调度的最小单位”。线程是程序中一个单一的顺序控制流程。进程内一个相对独立的、可调度的执行单元,是系统独立调度和分派CPU的基本单位指运行中的程序的调度单位。在单个程序中同时运行多个线程完成不同的工作,称为多线程。

进程和线程区别

进程是资源分配的基本单位。所有与该进程有关的资源,都被记录在进程控制块PCB中。以表示该进程拥有这些资源或正在使用它们。另外,进程也是抢占处理机的调度单位,它拥有一个完整的虚拟地址空间。当进程发生调度时,不同的进程拥有不同的虚拟地址空间,而同一进程内的不同线程共享同一地址空间。

与进程相对应,线程与资源分配无关,它属于某一个进程,并与进程内的其他线程一起共享进程的资源。线程只由相关堆栈(系统栈或用户栈)寄存器和线程控制表TCB组成。寄存器可被用来存储线程内的局部变量,但不能存储其他线程的相关变量。

通常在一个进程中可以包含若干个线程,它们可以利用进程所拥有的资源。在引入线程的操作系统中,通常都是把进程作为分配资源的基本单位,而把线程作为独立运行和独立调度的基本单位。

由于线程比进程更小,基本上不拥有系统资源,故对它的调度所付出的开销就会小得多,能更高效的提高系统内多个程序间并发执行的程度,从而显著提高系统资源的利用率和吞吐量。

因而近年来推出的通用操作系统都引入了线程,以便进一步提高系统的并发性,并把它视为现代操作系统的一个重要指标。

线程与进程的区别可以归纳为以下4点:

  • 地址空间和其它资源(如打开文件):进程间相互独立,同一进程的各线程间共享。某进程内的线程在其它进程不可见。

  • 通信:进程间通信IPC,线程间可以直接读写进程数据段(如全局变量)来进行通信——需要进程同步和互斥手段的辅助,以保证数据的一致性。

  • 调度和切换:线程上下文切换比进程上下文切换要快得多。

  • 在多线程OS中,进程不是一个可执行的实体。

多进程和多线程的比较

对比维度多进程多线程总结
数据共享、同步数据共享复杂,同步简单数据共享简单,同步复杂各有优劣
内存、CPU占用内存多,切换复杂,CPU利用率低占用内存少,切换简单,CPU利用率高线程占优
创建、销毁、切换复杂,速度慢简单,速度快线程占优
编程、调试编程简单,调试简单编程复杂,调试复杂进程占优
可靠性进程间不会互相影响一个线程挂掉将导致整个进程挂掉进程占优
分布式适用于多核、多机,扩展到多台机器简单适合于多核进程占优

总结,进程和线程还可以类比为火车和车厢:

  • 线程在进程下行进(单纯的车厢无法运行)

  • 一个进程可以包含多个线程(一辆火车可以有多个车厢)

  • 不同进程间数据很难共享(一辆火车上的乘客很难换到另外一辆火车,比如站点换乘)

  • 同一进程下不同线程间数据很易共享(A车厢换到B车厢很容易)

  • 进程要比线程消耗更多的计算机资源(采用多列火车相比多个车厢更耗资源)

  • 进程间不会相互影响,一个线程挂掉将导致整个进程挂掉(一列火车不会影响到另外一列火车,但是如果一列火车上中间的一节车厢着火了,将影响到该趟火车的所有车厢)

  • 进程可以拓展到多机,进程最多适合多核(不同火车可以开在多个轨道上,同一火车的车厢不能在行进的不同的轨道上)

  • 进程使用的内存地址可以上锁,即一个线程使用某些共享内存时,其他线程必须等它结束,才能使用这一块内存。(比如火车上的洗手间)-”互斥锁(mutex)”

  • 进程使用的内存地址可以限定使用量(比如火车上的餐厅,最多只允许多少人进入,如果满了需要在门口等,等有人出来了才能进去)-“信号量(semaphore)”

Python全局解释器锁GIL

全局解释器锁(英语:Global Interpreter Lock,缩写GIL),并不是Python的特性,它是在实现Python解析器(CPython)时所引入的一个概念。由于CPython是大部分环境下默认的Python执行环境。所以在很多人的概念里CPython就是Python,也就想当然的把GIL归结为Python语言的缺陷。那么CPython实现中的GIL又是什么呢?来看看官方的解释:

The mechanism used by the CPython interpreter to assure that only one thread executes Python bytecode at a time. This simplifies the CPython implementation by making the object model (including critical built-in types such as dict) implicitly safe against concurrent access. Locking the entire interpreter makes it easier for the interpreter to be multi-threaded, at the expense of much of the parallelism afforded by multi-processor machines.

Python代码的执行由Python 虚拟机(也叫解释器主循环,CPython版本)来控制,Python 在设计之初就考虑到要在解释器的主循环中,同时只有一个线程在执行,即在任意时刻,只有一个线程在解释器中运行。对Python 虚拟机的访问由全局解释器锁(GIL)来控制,正是这个锁能保证同一时刻只有一个线程在运行。

GIL 有什么好处?简单来说,它在单线程的情况更快,并且在和 C 库结合时更方便,而且不用考虑线程安全问题,这也是早期 Python 最常见的应用场景和优势。另外,GIL的设计简化了CPython的实现,使得对象模型,包括关键的内建类型如字典,都是隐含可以并发访问的。锁住全局解释器使得比较容易的实现对多线程的支持,但也损失了多处理器主机的并行计算能力。

在多线程环境中,Python 虚拟机按以下方式执行:

  1. 设置GIL

  2. 切换到一个线程去运行

  3. 运行直至指定数量的字节码指令,或者线程主动让出控制(可以调用sleep(0))

  4. 把线程设置为睡眠状态

  5. 解锁GIL

  6. 再次重复以上所有步骤

Python3.2前,GIL的释放逻辑是当前线程遇见IO操作或者ticks计数达到100(ticks可以看作是python自身的一个计数器,专门做用于GIL,每次释放后归零,这个计数可以通过 sys.setcheckinterval 来调整),进行释放。因为计算密集型线程在释放GIL之后又会立即去申请GIL,并且通常在其它线程还没有调度完之前它就已经重新获取到了GIL,就会导致一旦计算密集型线程获得了GIL,那么它在很长一段时间内都将占据GIL,甚至一直到该线程执行结束。

Python 3.2开始使用新的GIL。新的GIL实现中用一个固定的超时时间来指示当前的线程放弃全局锁。在当前线程保持这个锁,且其他线程请求这个锁时,当前线程就会在5毫秒后被强制释放该锁。该改进在单核的情况下,对于单个线程长期占用GIL的情况有所好转。

在单核CPU上,数百次的间隔检查才会导致一次线程切换。在多核CPU上,存在严重的线程颠簸(thrashing)。而每次释放GIL锁,线程进行锁竞争、切换线程,会消耗资源。单核下多线程,每次释放GIL,唤醒的那个线程都能获取到GIL锁,所以能够无缝执行,但多核下,CPU0释放GIL后,其他CPU上的线程都会进行竞争,但GIL可能会马上又被CPU0拿到,导致其他几个CPU上被唤醒后的线程会醒着等待到切换时间后又进入待调度状态,这样会造成线程颠簸(thrashing),导致效率更低。

另外,从上面的实现机制可以推导出,Python的多线程对IO密集型代码要比CPU密集型代码更加友好。

针对GIL的应对措施:

  • 使用更高版本Python(对GIL机制进行了优化)

  • 使用多进程替换多线程(多进程之间没有GIL,但是进程本身的资源消耗较多)

  • 指定cpu运行线程(使用affinity模块)

  • 使用Jython、IronPython等无GIL解释器

  • 全IO密集型任务时才使用多线程

  • 使用协程(高效的单线程模式,也称微线程;通常与多进程配合使用)

  • 将关键组件用C/C++编写为Python扩展,通过ctypes使Python程序直接调用C语言编译的动态链接库的导出函数。(with nogil调出GIL限制)

Python的多进程包multiprocessing

Python的threading包主要运用多线程的开发,但由于GIL的存在,Python中的多线程其实并不是真正的多线程,如果想要充分地使用多核CPU的资源,大部分情况需要使用多进程。在Python 2.6版本的时候引入了multiprocessing包,它完整的复制了一套threading所提供的接口方便迁移。唯一的不同就是它使用了多进程而不是多线程。每个进程有自己的独立的GIL,因此也不会出现进程之间的GIL争抢。

借助这个multiprocessing,你可以轻松完成从单进程到并发执行的转换。multiprocessing支持子进程、通信和共享数据、执行不同形式的同步,提供了Process、Queue、Pipe、Lock等组件。

Multiprocessing产生的背景

除了应对Python的GIL以外,产生multiprocessing的另外一个原因时Windows操作系统与Linux/Unix系统的不一致。

Unix/Linux操作系统提供了一个fork()系统调用,它非常特殊。普通的函数,调用一次,返回一次,但是fork()调用一次,返回两次,因为操作系统自动把当前进程(父进程)复制了一份(子进程),然后,分别在父进程和子进程内返回。子进程永远返回0,而父进程返回子进程的ID。这样做的理由是,一个父进程可以fork出很多子进程,所以,父进程要记下每个子进程的ID,而子进程只需要调用getpid()就可以拿到父进程的ID。

Python的os模块封装了常见的系统调用,其中就包括fork,可以在Python程序中轻松创建子进程:

import os      print('Process (%s) start...' % os.getpid())      \# Only works on Unix/Linux/Mac:      pid = os.fork()      if pid == 0:          print('I am child process (%s) and my parent is %s.' % (os.getpid(), os.getppid()))      else:          print('I (%s) just created a child process (%s).' % (os.getpid(), pid))   

上述代码在Linux、Unix和Mac上的执行结果为:

Process (876) start...      I (876) just created a child process (877).      I am child process (877) and my parent is 876.   

有了fork调用,一个进程在接到新任务时就可以复制出一个子进程来处理新任务,常见的Apache服务器就是由父进程监听端口,每当有新的http请求时,就fork出子进程来处理新的http请求。

由于Windows没有fork调用,上面的代码在Windows上无法运行。由于Python是跨平台的,自然也应该提供一个跨平台的多进程支持。multiprocessing模块就是跨平台版本的多进程模块。multiprocessing模块封装了fork()调用,使我们不需要关注fork()的细节。由于Windows没有fork调用,因此,multiprocessing需要“模拟”出fork的效果。

multiprocessing常用组件及功能

创建管理进程模块:

  • Process(用于创建进程)

  • Pool(用于创建管理进程池)

  • Queue(用于进程通信,资源共享)

  • Value,Array(用于进程通信,资源共享)

  • Pipe(用于管道通信)

  • Manager(用于资源共享)

同步子进程模块:

  • Condition(条件变量)

  • Event(事件)

  • Lock(互斥锁)

  • RLock(可重入的互斥锁(同一个进程可以多次获得它,同时不会造成阻塞)

  • Semaphore(信号量)

接下来就一起来学习下每个组件及功能的具体使用方法。

Process(用于创建进程)

multiprocessing模块提供了一个Process类来代表一个进程对象。

在multiprocessing中,每一个进程都用一个Process类来表示。

构造方法:Process([group [, target [, name [, args [, kwargs]]]]])

  • group:分组,实际上不使用,值始终为None

  • target:表示调用对象,即子进程要执行的任务,你可以传入方法名

  • name:为子进程设定名称

  • args:要传给target函数的位置参数,以元组方式进行传入。

  • kwargs:要传给target函数的字典参数,以字典方式进行传入。

实例方法:

  • start():启动进程,并调用该子进程中的p.run()

  • run():进程启动时运行的方法,正是它去调用target指定的函数,我们自定义类的类中一定要实现该方法

  • terminate():强制终止进程p,不会进行任何清理操作,如果p创建了子进程,该子进程就成了僵尸进程,使用该方法需要特别小心这种情况。如果p还保存了一个锁那么也将不会被释放,进而导致死锁

  • is_alive():返回进程是否在运行。如果p仍然运行,返回True

  • join([timeout]):进程同步,主进程等待子进程完成后再执行后面的代码。线程等待p终止(强调:是主线程处于等的状态,而p是处于运行的状态)。timeout是可选的超时时间(超过这个时间,父线程不再等待子线程,继续往下执行),需要强调的是,p.join只能join住start开启的进程,而不能join住run开启的进程

属性介绍:

  • daemon:默认值为False,如果设为True,代表p为后台运行的守护进程;当p的父进程终止时,p也随之终止,并且设定为True后,p不能创建自己的新进程;必须在p.start()之前设置

  • name:进程的名称

  • pid:进程的pid

  • exitcode:进程在运行时为None、如果为–N,表示被信号N结束(了解即可)

  • authkey:进程的身份验证键,默认是由os.urandom()随机生成的32字符的字符串。这个键的用途是为涉及网络连接的底层进程间通信提供安全性,这类连接只有在具有相同的身份验证键时才能成功(了解即可)

使用示例:(注意:在windows中Process()必须放到if name == ‘main’:下)

from multiprocessing import Process      import os      def run_proc(name):          print('Run child process %s (%s)...' % (name, os.getpid()))      if __name__=='__main__':          print('Parent process %s.' % os.getpid())          p = Process(target=run_proc, args=('test',))          print('Child process will start.')          p.start()          p.join()      print('Child process end.')   

Pool(用于创建管理进程池)

Pool类用于需要执行的目标很多,而手动限制进程数量又太繁琐时,如果目标少且不用控制进程数量则可以用Process类。Pool可以提供指定数量的进程,供用户调用,当有新的请求提交到Pool中时,如果池还没有满,那么就会创建一个新的进程用来执行该请求;但如果池中的进程数已经达到规定最大值,那么该请求就会等待,直到池中有进程结束,就重用进程池中的进程。

构造方法:Pool([processes[, initializer[, initargs[, maxtasksperchild[, context]]]]])

  • processes :要创建的进程数,如果省略,将默认使用cpu_count()返回的数量。

  • initializer:每个工作进程启动时要执行的可调用对象,默认为None。如果initializer是None,那么每一个工作进程在开始的时候会调用initializer(*initargs)。

  • initargs:是要传给initializer的参数组。

  • maxtasksperchild:工作进程退出之前可以完成的任务数,完成后用一个新的工作进程来替代原进程,来让闲置的资源被释放。maxtasksperchild默认是None,意味着只要Pool存在工作进程就会一直存活。

  • context: 用在制定工作进程启动时的上下文,一般使用Pool() 或者一个context对象的Pool()方法来创建一个池,两种方法都适当的设置了context。

实例方法:

  • apply(func[, args[, kwargs]]):在一个池工作进程中执行func(args,*kwargs),然后返回结果。需要强调的是:此操作并不会在所有池工作进程中并执行func函数。如果要通过不同参数并发地执行func函数,必须从不同线程调用p.apply()函数或者使用p.apply_async()。它是阻塞的。apply很少使用

  • apply_async(func[, arg[, kwds={}[, callback=None]]]):在一个池工作进程中执行func(args,*kwargs),然后返回结果。此方法的结果是AsyncResult类的实例,callback是可调用对象,接收输入参数。当func的结果变为可用时,将理解传递给callback。callback禁止执行任何阻塞操作,否则将接收其他异步操作中的结果。它是非阻塞。

  • map(func, iterable[, chunksize=None]):Pool类中的map方法,与内置的map函数用法行为基本一致,它会使进程阻塞直到返回结果。注意,虽然第二个参数是一个迭代器,但在实际使用中,必须在整个队列都就绪后,程序才会运行子进程。

  • map_async(func, iterable[, chunksize=None]):map_async与map的关系同apply与apply_async

  • imap():imap 与 map的区别是,map是当所有的进程都已经执行完了,并将结果返回了,imap()则是立即返回一个iterable可迭代对象。

  • imap_unordered():不保证返回的结果顺序与进程添加的顺序一致。

  • close():关闭进程池,防止进一步操作。如果所有操作持续挂起,它们将在工作进程终止前完成。

  • join():等待所有工作进程退出。此方法只能在close()或teminate()之后调用,让其不再接受新的Process。

  • terminate():结束工作进程,不再处理未处理的任务。

方法apply_async()和map_async()的返回值是AsyncResul的实例obj。实例具有以下方法:

  • get():返回结果,如果有必要则等待结果到达。timeout是可选的。如果在指定时间内还没有到达,将引发异常。如果远程操作中引发了异常,它将在调用此方法时再次被引发。

  • ready():如果调用完成,返回True

  • successful():如果调用完成且没有引发异常,返回True,如果在结果就绪之前调用此方法,引发异常

  • wait([timeout]):等待结果变为可用。

  • terminate():立即终止所有工作进程,同时不执行任何清理或结束任何挂起工作。如果p被垃圾回收,将自动调用此函数

使用示例:

\# -*- coding:utf-8 -*-      \# Pool+map      from multiprocessing import Pool      def test(i):          print(i)      if __name__ == "__main__":          lists = range(100)          pool = Pool(8)          pool.map(test, lists)          pool.close()          pool.join()   
\# -*- coding:utf-8 -*-      \# 异步进程池(非阻塞)      from multiprocessing import Pool      def test(i):          print(i)      if __name__ == "__main__":          pool = Pool(8)          for i in range(100):              '''              For循环中执行步骤:              (1)循环遍历,将100个子进程添加到进程池(相对父进程会阻塞)              (2)每次执行8个子进程,等一个子进程执行完后,立马启动新的子进程。(相对父进程不阻塞)              apply_async为异步进程池写法。异步指的是启动子进程的过程,与父进程本身的执行(print)是异步的,而For循环中往进程池添加子进程的过程,与父进程本身的执行却是同步的。              '''              pool.apply_async(test, args=(i,))  # 维持执行的进程总数为8,当一个进程执行完后启动一个新进程.          print("test")          pool.close()          pool.join()   
\# -*- coding:utf-8 -*-      \# 异步进程池(非阻塞)      from multiprocessing import Pool      def test(i):          print(i)      if __name__ == "__main__":          pool = Pool(8)          for i in range(100):              '''                  实际测试发现,for循环内部执行步骤:                  (1)遍历100个可迭代对象,往进程池放一个子进程                  (2)执行这个子进程,等子进程执行完毕,再往进程池放一个子进程,再执行。(同时只执行一个子进程)                  for循环执行完毕,再执行print函数。              '''              pool.apply(test, args=(i,))  # 维持执行的进程总数为8,当一个进程执行完后启动一个新进程.          print("test")          pool.close()          pool.join()   

Queue(用于进程通信,资源共享)

在使用多进程的过程中,最好不要使用共享资源。普通的全局变量是不能被子进程所共享的,只有通过Multiprocessing组件构造的数据结构可以被共享。

Queue是用来创建进程间资源共享的队列的类,使用Queue可以达到多进程间数据传递的功能(缺点:只适用Process类,不能在Pool进程池中使用)。

构造方法:Queue([maxsize])

  • maxsize是队列中允许最大项数,省略则无大小限制。

实例方法:

  • put():用以插入数据到队列。put方法还有两个可选参数:blocked和timeout。如果blocked为True(默认值),并且timeout为正值,该方法会阻塞timeout指定的时间,直到该队列有剩余的空间。如果超时,会抛出Queue.Full异常。如果blocked为False,但该Queue已满,会立即抛出Queue.Full异常。

  • get():可以从队列读取并且删除一个元素。get方法有两个可选参数:blocked和timeout。如果blocked为True(默认值),并且timeout为正值,那么在等待时间内没有取到任何元素,会抛出Queue.Empty异常。如果blocked为False,有两种情况存在,如果Queue有一个值可用,则立即返回该值,否则,如果队列为空,则立即抛出Queue.Empty异常。若不希望在empty的时候抛出异常,令blocked为True或者参数全部置空即可。

  • get_nowait():同q.get(False)

  • put_nowait():同q.put(False)

  • empty():调用此方法时q为空则返回True,该结果不可靠,比如在返回True的过程中,如果队列中又加入了项目。

  • full():调用此方法时q已满则返回True,该结果不可靠,比如在返回True的过程中,如果队列中的项目被取走。

  • qsize():返回队列中目前项目的正确数量,结果也不可靠,理由同q.empty()和q.full()一样

使用示例:

from multiprocessing import Process, Queue      import os, time, random      def write(q):          print('Process to write: %s' % os.getpid())          for value in ['A', 'B', 'C']:              print('Put %s to queue...' % value)              q.put(value)              time.sleep(random.random())      def read(q):          print('Process to read: %s' % os.getpid())          while True:              value = q.get(True)              print('Get %s from queue.' % value)      if __name__ == "__main__":          q = Queue()          pw = Process(target=write, args=(q,))          pr = Process(target=read, args=(q,))          pw.start()          pr.start()          pw.join()  # 等待pw结束          pr.terminate()  # pr进程里是死循环,无法等待其结束,只能强行终止   

JoinableQueue就像是一个Queue对象,但队列允许项目的使用者通知生成者项目已经被成功处理。通知进程是使用共享的信号和条件变量来实现的。

构造方法:JoinableQueue([maxsize])

  • maxsize:队列中允许最大项数,省略则无大小限制。

实例方法

JoinableQueue的实例p除了与Queue对象相同的方法之外还具有:

  • task_done():使用者使用此方法发出信号,表示q.get()的返回项目已经被处理。如果调用此方法的次数大于从队列中删除项目的数量,将引发ValueError异常

  • join():生产者调用此方法进行阻塞,直到队列中所有的项目均被处理。阻塞将持续到队列中的每个项目均调用q.task_done()方法为止

使用示例:

\# -*- coding:utf-8 -*-      from multiprocessing import Process, JoinableQueue      import time, random      def consumer(q):          while True:              res = q.get()              print('消费者拿到了 %s' % res)              q.task_done()      def producer(seq, q):          for item in seq:              time.sleep(random.randrange(1,2))              q.put(item)              print('生产者做好了 %s' % item)          q.join()      if __name__ == "__main__":          q = JoinableQueue()          seq = ('产品%s' % i for i in range(5))          p = Process(target=consumer, args=(q,))          p.daemon = True  # 设置为守护进程,在主线程停止时p也停止,但是不用担心,producer内调用q.join保证了consumer已经处理完队列中的所有元素          p.start()          producer(seq, q)          print('主线程')   

Value,Array(用于进程通信,资源共享)

multiprocessing 中Value和Array的实现原理都是在共享内存中创建ctypes()对象来达到共享数据的目的,两者实现方法大同小异,只是选用不同的ctypes数据类型而已。

Value

构造方法:Value((typecode_or_type, args[, lock])

  • typecode_or_type:定义ctypes()对象的类型,可以传Type code或 C Type,具体对照表见下文。

  • args:传递给typecode_or_type构造函数的参数

  • lock:默认为True,创建一个互斥锁来限制对Value对象的访问,如果传入一个锁,如Lock或RLock的实例,将用于同步。如果传入False,Value的实例就不会被锁保护,它将不是进程安全的。

typecode_or_type支持的类型:

`| Type code | C Type             | Python Type       | Minimum size in bytes |      | --------- | ------------------ | ----------------- | --------------------- |      | `'b'`     | signed char        | int               | 1                     |      | `'B'`     | unsigned char      | int               | 1                     |      | `'u'`     | Py_UNICODE         | Unicode character | 2                     |      | `'h'`     | signed short       | int               | 2                     |      | `'H'`     | unsigned short     | int               | 2                     |      | `'i'`     | signed int         | int               | 2                     |      | `'I'`     | unsigned int       | int               | 2                     |      | `'l'`     | signed long        | int               | 4                     |      | `'L'`     | unsigned long      | int               | 4                     |      | `'q'`     | signed long long   | int               | 8                     |      | `'Q'`     | unsigned long long | int               | 8                     |      | `'f'`     | float              | float             | 4                     |      | `'d'`     | double             | float             | 8                     |   `

参考地址:https://docs.python.org/3/library/array.html

Array

构造方法:Array(typecode_or_type, size_or_initializer, **kwds[, lock])

  • typecode_or_type:同上

  • size_or_initializer:如果它是一个整数,那么它确定数组的长度,并且数组将被初始化为零。否则,size_or_initializer是用于初始化数组的序列,其长度决定数组的长度。

  • kwds:传递给typecode_or_type构造函数的参数

  • lock:同上

使用示例:

import multiprocessing      def f(n, a):          n.value = 3.14          a[0] = 5      if __name__ == '__main__':          num = multiprocessing.Value('d', 0.0)          arr = multiprocessing.Array('i', range(10))          p = multiprocessing.Process(target=f, args=(num, arr))          p.start()          p.join()          print(num.value)          print(arr[:])   

注意:Value和Array只适用于Process类。

Pipe(用于管道通信)

多进程还有一种数据传递方式叫管道原理和 Queue相同。Pipe可以在进程之间创建一条管道,并返回元组(conn1,conn2),其中conn1,conn2表示管道两端的连接对象,强调一点:必须在产生Process对象之前产生管道。

构造方法:Pipe([duplex])

  • dumplex:默认管道是全双工的,如果将duplex射成False,conn1只能用于接收,conn2只能用于发送。

实例方法:

  • send(obj):通过连接发送对象。obj是与序列化兼容的任意对象

  • recv():接收conn2.send(obj)发送的对象。如果没有消息可接收,recv方法会一直阻塞。如果连接的另外一端已经关闭,那么recv方法会抛出EOFError。

  • close():关闭连接。如果conn1被垃圾回收,将自动调用此方法

  • fileno():返回连接使用的整数文件描述符

  • poll([timeout]):如果连接上的数据可用,返回True。timeout指定等待的最长时限。如果省略此参数,方法将立即返回结果。如果将timeout射成None,操作将无限期地等待数据到达。

  • recv_bytes([maxlength]):接收c.send_bytes()方法发送的一条完整的字节消息。maxlength指定要接收的最大字节数。如果进入的消息,超过了这个最大值,将引发IOError异常,并且在连接上无法进行进一步读取。如果连接的另外一端已经关闭,再也不存在任何数据,将引发EOFError异常。

  • send_bytes(buffer [, offset [, size]]):通过连接发送字节数据缓冲区,buffer是支持缓冲区接口的任意对象,offset是缓冲区中的字节偏移量,而size是要发送字节数。结果数据以单条消息的形式发出,然后调用c.recv_bytes()函数进行接收

  • recv_bytes_into(buffer [, offset]):接收一条完整的字节消息,并把它保存在buffer对象中,该对象支持可写入的缓冲区接口(即bytearray对象或类似的对象)。offset指定缓冲区中放置消息处的字节位移。返回值是收到的字节数。如果消息长度大于可用的缓冲区空间,将引发BufferTooShort异常。

使用示例:

from multiprocessing import Process, Pipe      import time      \# 子进程执行方法      def f(Subconn):          time.sleep(1)          Subconn.send("吃了吗")          print("来自父亲的问候:", Subconn.recv())          Subconn.close()      if __name__ == "__main__":          parent_conn, child_conn = Pipe()  # 创建管道两端          p = Process(target=f, args=(child_conn,))  # 创建子进程          p.start()          print("来自儿子的问候:", parent_conn.recv())          parent_conn.send("嗯")   

Manager(用于资源共享)

Manager()返回的manager对象控制了一个server进程,此进程包含的python对象可以被其他的进程通过proxies来访问。从而达到多进程间数据通信且安全。Manager模块常与Pool模块一起使用。

Manager支持的类型有list,dict,Namespace,Lock,RLock,Semaphore,BoundedSemaphore,Condition,Event,Queue,Value和Array。

管理器是独立运行的子进程,其中存在真实的对象,并以服务器的形式运行,其他进程通过使用代理访问共享对象,这些代理作为客户端运行。Manager()是BaseManager的子类,返回一个启动的SyncManager()实例,可用于创建共享对象并返回访问这些共享对象的代理。

BaseManager,创建管理器服务器的基类

构造方法:BaseManager([address[, authkey]])

  • address:(hostname,port),指定服务器的网址地址,默认为简单分配一个空闲的端口

  • authkey:连接到服务器的客户端的身份验证,默认为current_process().authkey的值

实例方法:

  • start([initializer[, initargs]]):启动一个单独的子进程,并在该子进程中启动管理器服务器

  • get_server():获取服务器对象

  • connect():连接管理器对象

  • shutdown():关闭管理器对象,只能在调用了start()方法之后调用

实例属性:

  • address:只读属性,管理器服务器正在使用的地址

SyncManager**,**以下类型均不是进程安全的,需要加锁…

实例方法:

  • Array(self,*args,**kwds)

  • BoundedSemaphore(self,*args,**kwds)

  • Condition(self,*args,**kwds)

  • Event(self,*args,**kwds)

  • JoinableQueue(self,*args,**kwds)

  • Lock(self,*args,**kwds)

  • Namespace(self,*args,**kwds)

  • Pool(self,*args,**kwds)

  • Queue(self,*args,**kwds)

  • RLock(self,*args,**kwds)

  • Semaphore(self,*args,**kwds)

  • Value(self,*args,**kwds)

  • dict(self,*args,**kwds)

  • list(self,*args,**kwds)

使用示例:

import multiprocessing      def f(x, arr, l, d, n):          x.value = 3.14          arr[0] = 5          l.append('Hello')          d[1] = 2          n.a = 10      if __name__ == '__main__':          server = multiprocessing.Manager()          x = server.Value('d', 0.0)          arr = server.Array('i', range(10))          l = server.list()          d = server.dict()          n = server.Namespace()          proc = multiprocessing.Process(target=f, args=(x, arr, l, d, n))          proc.start()          proc.join()          print(x.value)          print(arr)          print(l)          print(d)          print(n)   

同步子进程模块

Lock(互斥锁)

Lock锁的作用是当多个进程需要访问共享资源的时候,避免访问的冲突。加锁保证了多个进程修改同一块数据时,同一时间只能有一个修改,即串行的修改,牺牲了速度但保证了数据安全。Lock包含两种状态——锁定和非锁定,以及两个基本的方法。

构造方法:Lock()

实例方法:

  • acquire([timeout]): 使线程进入同步阻塞状态,尝试获得锁定。

  • release(): 释放锁。使用前线程必须已获得锁定,否则将抛出异常。

使用示例:

from multiprocessing import Process, Lock      def l(lock, num):          lock.acquire()          print("Hello Num: %s" % (num))          lock.release()      if __name__ == '__main__':          lock = Lock()  # 这个一定要定义为全局          for num in range(20):              Process(target=l, args=(lock, num)).start()   

RLock(可重入的互斥锁(同一个进程可以多次获得它,同时不会造成阻塞)

RLock(可重入锁)是一个可以被同一个线程请求多次的同步指令。RLock使用了“拥有的线程”和“递归等级”的概念,处于锁定状态时,RLock被某个线程拥有。拥有RLock的线程可以再次调用acquire(),释放锁时需要调用release()相同次数。可以认为RLock包含一个锁定池和一个初始值为0的计数器,每次成功调用 acquire()/release(),计数器将+1/-1,为0时锁处于未锁定状态。

构造方法:RLock()

实例方法:

  • acquire([timeout]):同Lock

  • release(): 同Lock

Semaphore(信号量)

信号量是一个更高级的锁机制。信号量内部有一个计数器而不像锁对象内部有锁标识,而且只有当占用信号量的线程数超过信号量时线程才阻塞。这允许了多个线程可以同时访问相同的代码区。比如厕所有3个坑,那最多只允许3个人上厕所,后面的人只能等里面有人出来了才能再进去,如果指定信号量为3,那么来一个人获得一把锁,计数加1,当计数等于3时,后面的人均需要等待。一旦释放,就有人可以获得一把锁。

构造方法:Semaphore([value])

  • value:设定信号量,默认值为1

实例方法:

  • acquire([timeout]):同Lock

  • release(): 同Lock

使用示例:

from multiprocessing import Process, Semaphore      import time, random      def go_wc(sem, user):          sem.acquire()          print('%s 占到一个茅坑' % user)          time.sleep(random.randint(0, 3))          sem.release()          print(user, 'OK')      if __name__ == '__main__':          sem = Semaphore(2)          p_l = []          for i in range(5):              p = Process(target=go_wc, args=(sem, 'user%s' % i,))              p.start()              p_l.append(p)          for i in p_l:              i.join()   

Condition(条件变量)

可以把Condition理解为一把高级的锁,它提供了比Lock, RLock更高级的功能,允许我们能够控制复杂的线程同步问题。Condition在内部维护一个锁对象(默认是RLock),可以在创建Condigtion对象的时候把琐对象作为参数传入。Condition也提供了acquire, release方法,其含义与锁的acquire, release方法一致,其实它只是简单的调用内部锁对象的对应的方法而已。Condition还提供了其他的一些方法。

构造方法:Condition([lock/rlock])

  • 可以传递一个Lock/RLock实例给构造方法,否则它将自己生成一个RLock实例。

实例方法:

  • acquire([timeout]):首先进行acquire,然后判断一些条件。如果条件不满足则wait

  • release():释放 Lock

  • wait([timeout]): 调用这个方法将使线程进入Condition的等待池等待通知,并释放锁。使用前线程必须已获得锁定,否则将抛出异常。处于wait状态的线程接到通知后会重新判断条件。

  • notify(): 调用这个方法将从等待池挑选一个线程并通知,收到通知的线程将自动调用acquire()尝试获得锁定(进入锁定池);其他线程仍然在等待池中。调用这个方法不会释放锁定。使用前线程必须已获得锁定,否则将抛出异常。

  • notifyAll(): 调用这个方法将通知等待池中所有的线程,这些线程都将进入锁定池尝试获得锁定。调用这个方法不会释放锁定。使用前线程必须已获得锁定,否则将抛出异常。

使用示例:

import multiprocessing      import time      def stage_1(cond):          """perform first stage of work,          then notify stage_2 to continue          """          name = multiprocessing.current_process().name          print('Starting', name)          with cond:              print('{} done and ready for stage 2'.format(name))              cond.notify_all()      def stage_2(cond):          """wait for the condition telling us stage_1 is done"""          name = multiprocessing.current_process().name          print('Starting', name)          with cond:              cond.wait()              print('{} running'.format(name))      if __name__ == '__main__':          condition = multiprocessing.Condition()          s1 = multiprocessing.Process(name='s1',                                       target=stage_1,                                       args=(condition,))          s2_clients = [              multiprocessing.Process(                  name='stage_2[{}]'.format(i),                  target=stage_2,                  args=(condition,),              )              for i in range(1, 3)          ]          for c in s2_clients:              c.start()              time.sleep(1)          s1.start()          s1.join()          for c in s2_clients:              c.join()   

Event(事件)

Event内部包含了一个标志位,初始的时候为false。可以使用set()来将其设置为true;或者使用clear()将其从新设置为false;可以使用is_set()来检查标志位的状态;另一个最重要的函数就是wait(timeout=None),用来阻塞当前线程,直到event的内部标志位被设置为true或者timeout超时。如果内部标志位为true则wait()函数理解返回。

使用示例:

import multiprocessing      import time      def wait_for_event(e):          """Wait for the event to be set before doing anything"""          print('wait_for_event: starting')          e.wait()          print('wait_for_event: e.is_set()->', e.is_set())      def wait_for_event_timeout(e, t):          """Wait t seconds and then timeout"""          print('wait_for_event_timeout: starting')          e.wait(t)          print('wait_for_event_timeout: e.is_set()->', e.is_set())      if __name__ == '__main__':          e = multiprocessing.Event()          w1 = multiprocessing.Process(              name='block',              target=wait_for_event,              args=(e,),          )          w1.start()          w2 = multiprocessing.Process(              name='nonblock',              target=wait_for_event_timeout,              args=(e, 2),          )          w2.start()          print('main: waiting before calling Event.set()')          time.sleep(3)          e.set()          print('main: event is set')   

其他内容

multiprocessing.dummy 模块与 multiprocessing 模块的区别:dummy 模块是多线程,而 multiprocessing 是多进程, api 都是通用的。所有可以很方便将代码在多线程和多进程之间切换。multiprocessing.dummy通常在IO场景可以尝试使用,比如使用如下方式引入线程池。

from multiprocessing.dummy import Pool as ThreadPool   

multiprocessing.dummy与早期的threading,不同的点好像是在多多核CPU下,只绑定了一个核心(具体未考证)。

参考文档:

  • https://docs.python.org/3/library/multiprocessing.html

  • https://www.rddoc.com/doc/Python/3.6.0/zh/library/multiprocessing/

Python并发之concurrent.futures

Python标准库为我们提供了threading和multiprocessing模块编写相应的多线程/多进程代码。从Python3.2开始,标准库为我们提供了concurrent.futures模块,它提供了ThreadPoolExecutor和ProcessPoolExecutor两个类,实现了对threading和multiprocessing的更高级的抽象,对编写线程池/进程池提供了直接的支持。concurrent.futures基础模块是executor和future。

Executor

Executor是一个抽象类,它不能被直接使用。它为具体的异步执行定义了一些基本的方法。ThreadPoolExecutor和ProcessPoolExecutor继承了Executor,分别被用来创建线程池和进程池的代码。

ThreadPoolExecutor对象

ThreadPoolExecutor类是Executor子类,使用线程池执行异步调用。

class concurrent.futures.ThreadPoolExecutor(max_workers)   

使用max_workers数目的线程池执行异步调用。

ProcessPoolExecutor对象

ThreadPoolExecutor类是Executor子类,使用进程池执行异步调用。

class concurrent.futures.ProcessPoolExecutor(max_workers=None)   

使用max_workers数目的进程池执行异步调用,如果max_workers为None则使用机器的处理器数目(如4核机器max_worker配置为None时,则使用4个进程进行异步并发)。

submit()方法

Executor中定义了submit()方法,这个方法的作用是提交一个可执行的回调task,并返回一个future实例。future对象代表的就是给定的调用。

Executor.submit(fn, *args, **kwargs)

  • fn:需要异步执行的函数

  • *args, **kwargs:fn参数

使用示例:

from concurrent import futures      def test(num):          import time          return time.ctime(), num      with futures.ThreadPoolExecutor(max_workers=1) as executor:          future = executor.submit(test, 1)          print(future.result())   

map()方法

除了submit,Exectuor还为我们提供了map方法,这个方法返回一个map(func, *iterables)迭代器,迭代器中的回调执行返回的结果有序的。

Executor.map(func, *iterables, timeout=None)

  • func:需要异步执行的函数

  • *iterables:可迭代对象,如列表等。每一次func执行,都会从iterables中取参数。

  • timeout:设置每次异步操作的超时时间,timeout的值可以是int或float,如果操作超时,会返回raisesTimeoutError;如果不指定timeout参数,则不设置超时间。

使用示例:

from concurrent import futures      def test(num):          import time          return time.ctime(), num      data = [1, 2, 3]      with futures.ThreadPoolExecutor(max_workers=1) as executor:          for future in executor.map(test, data):              print(future)   

shutdown()方法

释放系统资源,在Executor.submit()或 Executor.map()等异步操作后调用。使用with语句可以避免显式调用此方法。

Executor.shutdown(wait=True)

Future

Future可以理解为一个在未来完成的操作,这是异步编程的基础。通常情况下,我们执行io操作,访问url时(如下)在等待结果返回之前会产生阻塞,cpu不能做其他事情,而Future的引入帮助我们在等待的这段时间可以完成其他的操作。

Future类封装了可调用的异步执行。Future 实例通过 Executor.submit()方法创建。

  • cancel():试图取消调用。如果调用当前正在执行,并且不能被取消,那么该方法将返回False,否则调用将被取消,方法将返回True。

  • cancelled():如果成功取消调用,返回True。

  • running():如果调用当前正在执行并且不能被取消,返回True。

  • done():如果调用成功地取消或结束了,返回True。

  • result(timeout=None):返回调用返回的值。如果调用还没有完成,那么这个方法将等待超时秒。如果调用在超时秒内没有完成,那么就会有一个Futures.TimeoutError将报出。timeout可以是一个整形或者浮点型数值,如果timeout不指定或者为None,等待时间无限。如果futures在完成之前被取消了,那么 CancelledError 将会报出。

  • exception(timeout=None):返回调用抛出的异常,如果调用还未完成,该方法会等待timeout指定的时长,如果该时长后调用还未完成,就会报出超时错误futures.TimeoutError。timeout可以是一个整形或者浮点型数值,如果timeout不指定或者为None,等待时间无限。如果futures在完成之前被取消了,那么 CancelledError 将会报出。如果调用完成并且无异常报出,返回None.

  • add_done_callback(fn):将可调用fn捆绑到future上,当Future被取消或者结束运行,fn作为future的唯一参数将会被调用。如果future已经运行完成或者取消,fn将会被立即调用。

  • wait(fs, timeout=None, return_when=ALL_COMPLETED)

  • 等待fs提供的 Future 实例(possibly created by different Executor instances) 运行结束。返回一个命名的2元集合,分表代表已完成的和未完成的

  • return_when 表明什么时候函数应该返回。它的值必须是一下值之一:

  • FIRST_COMPLETED :函数在任何future结束或者取消的时候返回。

  • FIRST_EXCEPTION :函数在任何future因为异常结束的时候返回,如果没有future报错,效果等于

  • ALL_COMPLETED :函数在所有future结束后才会返回。

  • as_completed(fs, timeout=None):参数是一个 Future 实例列表,返回值是一个迭代器,在运行结束后产出 Future实例 。

使用示例:

from concurrent.futures import ThreadPoolExecutor, wait, as_completed      from time import sleep      from random import randint      def return_after_5_secs(num):          sleep(randint(1, 5))          return "Return of {}".format(num)      pool = ThreadPoolExecutor(5)      futures = []      for x in range(5):          futures.append(pool.submit(return_after_5_secs, x))      print(1)      for x in as_completed(futures):          print(x.result())      print(2)   
---------------------------END---------------------------

题外话

在这里插入图片描述

感兴趣的小伙伴,赠送全套Python学习资料,包含面试题、简历资料等具体看下方。

👉CSDN大礼包🎁:全网最全《Python学习资料》免费赠送🆓!(安全链接,放心点击)

一、Python所有方向的学习路线

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

img
img

二、Python必备开发工具

工具都帮大家整理好了,安装就可直接上手!img

三、最新Python学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。

img

四、Python视频合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

img

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

img

六、面试宝典

在这里插入图片描述

在这里插入图片描述

简历模板在这里插入图片描述

👉CSDN大礼包🎁:全网最全《Python学习资料》免费赠送🆓!(安全链接,放心点击)

若有侵权,请联系删除

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/991733.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Unity 之 Invoke 与InvokeRepeting 函数控制定时调用

文章目录 InvokeInvokeRepeating Invoke 在Unity游戏开发中,Invoke是一种用于延迟调用方法的方法。它允许你在一定的时间之后执行特定的函数或方法,通常用于执行定时任务,例如在一段时间后触发一个事件或在一定间隔内重复执行某个方法。Invo…

第68步 时间序列建模实战:ARIMA建模(Matlab)

基于WIN10的64位系统演示 一、写在前面 这一期,我们使用Matlab进行SARIMA模型的构建。 不同样,这里使用另一个数据: 采用《PLoS One》2015年一篇题目为《Comparison of Two Hybrid Models for Forecasting the Incidence of Hemorrhagic …

65.Linux系统上库文件的生成与使用

目录 1.什么是库文件 2.静态库的生成与使用 2.1静态库的生成 2.2静态库的使用 3.共享库的生成和使用 3.1共享库的生成 3.2共享库的使用 4、静态库和共享库的区别 1.什么是库文件 库是一组预先编译好的方法的集合。Linux系统存储的库的位置一般在:/lib 和 /…

云服务器下如何部署Django项目详细操作步骤

前期本人完成了“编写你的第一个 Django 应用程序”,有了一个简单的项目代码,在本地window系统自测没问题了,接下来就想办法部署到服务器上,可以通过公网访问我们的Django项目。将开发机器上运行的开发版软件实际安装到服务器上进…

四川玖璨电子商务有限公司:抖店代运营

抖店代运营是一种新兴的电商服务模式,通过专业团队全程管理店铺运营,帮助商家快速扩大销售规模。抖店代运营的出现,为很多创业者和传统实体店提供了一个转型升级的机会。 抖店代运营首先需要了解抖音这个平台的特点和用户群体,根…

史上最详细的Python安装教程,小白建议收藏!

前言:Hello大家好,我是小哥谈。Python是一种高级、通用、解释型的编程语言,由Guido van Rossum于1989年开始设计,1991年首次发布。它以简洁易读的语法而著称,并且强调代码的可读性和简洁性,使得程序员能够更…

出版行业常用软件系统开发

出版行业使用多种软件系统来支持各种出版任务,包括编辑、排版、制作、销售和管理。以下是出版行业中常用的一些软件系统以及它们各自的主要功能,希望对大家有所帮助。北京木奇移动技术有限公司,专业的软件外包开发公司,欢迎交流合…

【Java】传输层协议TCP

传输层协议TCP TCP报文格式首部长度保留位32位序列号和32位确认应答号标记ACKSYNFINRSTURGPSH 16位窗口大小16位校验和16位紧急指针选项 TCP特点可靠传输实现机制-确认应答超时重传连接管理机制三次握手四次挥手特殊情况 滑动窗口流量控制拥塞控制延迟应答捎带应答面向字节流粘…

Java网络编程( 一 )数据如何在网络上传输

数据如何在网络上传输 网络发展背景发送端和接收端网络协议分层封装 & 分用封装:分用: 传输补充(数据链路层(以太网)):ARP协议 网络发展背景 单机阶段—>局域网阶段—>广域网阶段—&…

Leetcode129. 求根到叶子节点数字之和

力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台 给你一个二叉树的根节点 root ,树中每个节点都存放有一个 0 到 9 之间的数字。 每条从根节点到叶节点的路径都代表一个数字: 例如,从根节点到叶子节点的路径 1 ->…

基于v-md-editor的在线文档编辑实现

概述 前面的文章讲到了基于语雀的在线文档编辑器的实现,在本文,将基于v-md-editor实现在线文档的编辑。 实现后效果 实现 说明:本文是基于Vue3实现的,实现了:1.Markdown的在线编辑和预览;2. 文件的上传和…

了解静电消除器离子风嘴的作用

离子风嘴在工业用途中很广泛。属于用压缩气系列的除静电的一种设备。具有安装简单、性能稳定、风速强劲、除静电迅速的特点。 离子风嘴可以产生许多的带着有正电荷负电荷的气体,被压缩气吹出,可以把设备上带的电荷中和掉。当设备表面上带有的电荷为负电荷…

Java认识异常(超级详细)

目录 异常的概念和体系结构 异常的概念 异常的体系结构 异常的分类 1.编译时异常 2.运行时异常 异常的处理 防御式编程 LBYL EAFP 异常的抛出 异常的捕获 异常声明throws try-catch捕获并处理 finally 异常的处理流程 异常的概念和体系结构 异常的概念 在Java中…

文件操作(个人学习笔记黑马学习)

C中对文件操作需要包含头文件<fstream > 文件类型分为两种: 1.文本文件&#xff1a;文件以文本的ASCII码形式存储在计算机中 2.二进制文件&#xff1a;文件以文本的二进制形式存储在计算机中&#xff0c;用户一般不能直接读懂它们 操作文件的三大类: 1.ofstream: 写操作 …

Tableau自四部曲_Part1:Tableau介绍与安装

文章目录 一、Tableau的优势1. Excel2. SQL3. Python/R4. Tableau 二、Tableau、PowerBI、FineBI到底应该学哪个1. 功能全面性2. 易学程度3. 学习顺序 三、Tableau下载与安装1. 下载2. 注册3. 安装4. 试用5. 激活6. 秘钥管理7. 学生账号申请 一、Tableau的优势 1. Excel 容易…

Java集合学习详解(2023年史上最全版)

java集合学习目录 一、基本概要0. 辅助工具类0.1 Collection 和 Collections 有什么区别&#xff1f;0.2 comparable 和 comparator的区别&#xff1f; 1.什么是集合2.集合的分类2.1 Collection接口2.2 Map接口 二、集合框架底层数据结构1. &#x1f60a;Collection1.1 ❤List1…

大麦订单生成 大麦订单购票成功截图生成

后台一键生成链接&#xff0c;后台管理 教程&#xff1a;解压源码&#xff0c;修改数据库config/Congig 不会可以看源码里有教程 下载程序&#xff1a;https://pan.baidu.com/s/16lN3gvRIZm7pqhvVMYYecQ?pwd6zw3

微信小程序中 vant weapp 使用外部的icon作为图标的步骤

微信小程序中 vant weapp 使用外部的icon作为图标的步骤 1. 在项目中创建静态资源文件夹2. 前往iconfont图标官网&#xff0c;添加图标并拷贝在线链接3. 下载iconfont代码&#xff0c;解压之后拷贝到小程序的目录中4. 修改iconfont.wxss 将本地链接替换为在线链接5. 在项目的ap…

Springboot+druid

1.Druid是Java语言中最好的数据库连接池。Druid能够提供强大的监控和扩展功能。 2.配置maven <dependency><groupId>com.alibaba</groupId><artifactId>druid</artifactId><version>${druid-version}</version></dependency>…

Wireshark TS | 网络路径不一致传输丢包问题

问题背景 网络路径不一致&#xff0c;或者说是网络路径来回不一致&#xff0c;再专业点可以说是网络路径不对称&#xff0c;以上种种说法&#xff0c;做网络方向的工程师肯定会更清楚些&#xff0c;用简单的描述就是&#xff1a; A 与 B 通讯场景&#xff0c;C 和 D 代表中间…