算法训练day38|动态规划 part01(理论基础、LeetCode509. 斐波那契数、70. 爬楼梯、746. 使用最小花费爬楼梯)

news2025/1/16 6:55:57

文章目录

  • 理论基础
    • 什么是动态规划
    • 动态规划的解题步骤
  • 509. 斐波那契数
    • 思路分析
    • 代码实现
    • 思考总结
  • 70. 爬楼梯
    • 思路分析
    • 代码实现
    • 思考总结
  • 746. 使用最小花费爬楼梯
    • 思路分析
    • 代码实现

理论基础

在这里插入图片描述

什么是动态规划

动态规划,英文:Dynamic Programming,简称DP,如果某一问题有很多重叠子问题,使用动态规划是最有效的。

所以动态规划中每一个状态一定是由上一个状态推导出来的,这一点就区分于贪心,贪心没有状态推导,而是从局部直接选最优的,

例如:有N件物品和一个最多能背重量为W 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。

动态规划中dp[j]是由dp[j-weight[i]]推导出来的,然后取max(dp[j], dp[j - weight[i]] + value[i])。

但如果是贪心呢,每次拿物品选一个最大的或者最小的就完事了,和上一个状态没有关系。

所以贪心解决不了动态规划的问题。

其实大家也不用死扣动规和贪心的理论区别,后面做做题目自然就知道了。

大家知道动规是由前一个状态推导出来的,而贪心是局部直接选最优的,对于刷题来说就够用了。

动态规划的解题步骤

动态规划五部曲

对于动态规划问题,我将拆解为如下五步曲!

  • 确定dp数组(dp table)以及下标的含义
  • 确定递推公式
  • dp数组如何初始化
  • 确定遍历顺序
  • 举例推导dp数组

一些同学可能想为什么要先确定递推公式,然后在考虑初始化呢?

因为一些情况是递推公式决定了dp数组要如何初始化!

后面的讲解中我都是围绕着这五点来进行讲解。

可能刷过动态规划题目的同学可能都知道递推公式的重要性,感觉确定了递推公式这道题目就解出来了。

其实 确定递推公式 仅仅是解题里的一步而已!

一些同学知道递推公式,但搞不清楚dp数组应该如何初始化,或者正确的遍历顺序,以至于记下来公式,但写的程序怎么改都通过不了。

后序的讲解的大家就会慢慢感受到这五步的重要性了。

动态规划debug

找问题的最好方式就是把dp数组打印出来,看看究竟是不是按照自己思路推导的!

做动规的题目,写代码之前一定要把状态转移在dp数组的上具体情况模拟一遍,心中有数,确定最后推出的是想要的结果。

然后再写代码,如果代码没通过就打印dp数组,看看是不是和自己预先推导的哪里不一样。

如果打印出来和自己预先模拟推导是一样的,那么就是自己的递归公式、初始化或者遍历顺序有问题了。

如果和自己预先模拟推导的不一样,那么就是代码实现细节有问题。


509. 斐波那契数

题目链接🔥
斐波那契数,通常用 F(n) 表示,形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是: F(0) = 0,F(1) = 1 F(n) = F(n - 1) + F(n - 2),其中 n > 1 给你n ,请计算 F(n) 。

示例 1:
输入:2
输出:1
解释:F(2) = F(1) + F(0) = 1 + 0 = 1

示例 2:
输入:3
输出:2
解释:F(3) = F(2) + F(1) = 1 + 1 = 2

示例 3:
输入:4
输出:3
解释:F(4) = F(3) + F(2) = 2 + 1 = 3

提示:
0 <= n <= 30

思路分析

动规五部曲:

这里我们要用一个一维dp数组来保存递归的结果

确定dp数组以及下标的含义
dp[i]的定义为:第i个数的斐波那契数值是dp[i]

确定递推公式
为什么这是一道非常简单的入门题目呢?

因为题目已经把递推公式直接给我们了:状态转移方程 dp[i] = dp[i - 1] + dp[i - 2];

dp数组如何初始化
题目中把如何初始化也直接给我们了,如下:

dp[0] = 0;
dp[1] = 1;

确定遍历顺序
从递归公式dp[i] = dp[i - 1] + dp[i - 2];中可以看出,dp[i]是依赖 dp[i - 1] 和 dp[i - 2],那么遍历的顺序一定是从前到后遍历的

举例推导dp数组
按照这个递推公式dp[i] = dp[i - 1] + dp[i - 2],我们来推导一下,当N为10的时候,dp数组应该是如下的数列:

0 1 1 2 3 5 8 13 21 34 55

如果代码写出来,发现结果不对,就把dp数组打印出来看看和我们推导的数列是不是一致的。

代码实现

class Solution {
public:
    int fib(int n) {
        if(n<=1) return n;
        vector<int> dp(n+1);
        dp[0]=0;
        dp[1]=1;
        for(int i=2;i<=n;i++){
            dp[i]=dp[i-1]+dp[i-2];
        }
        return dp[n];
    }
};

递归法:

class Solution {
public:
    int fib(int n) {
        if(n<=1) return n;
        return fib(n-1)+fib(n-2);
    }
};

思考总结

动规五部曲将在接下来的动态规划讲解中发挥重要作用,要记住


70. 爬楼梯

题目链接🔥
假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?
注意:给定 n 是一个正整数。

示例 1:
输入: 2
输出: 2
解释: 有两种方法可以爬到楼顶。
1 阶 + 1 阶
2 阶

示例 2:
输入: 3
输出: 3
解释: 有三种方法可以爬到楼顶。
1 阶 + 1 阶 + 1 阶
1 阶 + 2 阶
2 阶 + 1 阶

思路分析

爬到第一层楼梯有一种方法,爬到二层楼梯有两种方法。

那么第一层楼梯再跨两步就到第三层 ,第二层楼梯再跨一步就到第三层。

所以到第三层楼梯的状态可以由第二层楼梯 和 到第一层楼梯状态推导出来,那么就可以想到动态规划了。

我们来分析一下,动规五部曲:

定义一个一维数组来记录不同楼层的状态

  1. 确定dp数组以及下标的含义

dp[i]: 爬到第i层楼梯,有dp[i]种方法

  1. 确定递推公式

如何可以推出dp[i]呢?

从dp[i]的定义可以看出,dp[i] 可以有两个方向推出来。
首先是dp[i - 1],上i-1层楼梯,有dp[i - 1]种方法,那么再一步跳一个台阶不就是dp[i]了么。
还有就是dp[i - 2],上i-2层楼梯,有dp[i - 2]种方法,那么再一步跳两个台阶不就是dp[i]了么。
那么dp[i]就是 dp[i - 1]与dp[i - 2]之和!
所以dp[i] = dp[i - 1] + dp[i - 2] 。

在推导dp[i]的时候,一定要时刻想着dp[i]的定义,否则容易跑偏。
这体现出确定dp数组以及下标的含义的重要性!

  1. dp数组如何初始化

再回顾一下dp[i]的定义:爬到第i层楼梯,有dp[i]种方法。

那么i为0,dp[i]应该是多少呢,这个可以有很多解释,但基本都是直接奔着答案去解释的。

例如强行安慰自己爬到第0层,也有一种方法,什么都不做也就是一种方法即:dp[0] = 1,相当于直接站在楼顶。

但总有点牵强的成分。

那还这么理解呢:我就认为跑到第0层,方法就是0啊,一步只能走一个台阶或者两个台阶,然而楼层是0,直接站楼顶上了,就是不用方法,dp[0]就应该是0.

其实这么争论下去没有意义,大部分解释说dp[0]应该为1的理由其实是因为dp[0]=1的话在递推的过程中i从2开始遍历本题就能过,然后就往结果上靠去解释dp[0] = 1。

从dp数组定义的角度上来说,dp[0] = 0 也能说得通。

需要注意的是:题目中说了n是一个正整数,题目根本就没说n有为0的情况。

所以本题其实就不应该讨论dp[0]的初始化!

我相信dp[1] = 1,dp[2] = 2,这个初始化大家应该都没有争议的。

所以我的原则是:不考虑dp[0]如何初始化,只初始化dp[1] = 1,dp[2] = 2,然后从i = 3开始递推,这样才符合dp[i]的定义。

  1. 确定遍历顺序

从递推公式dp[i] = dp[i - 1] + dp[i - 2];中可以看出,遍历顺序一定是从前向后遍历的

  1. 举例推导dp数组

举例当n为5的时候,dp table(dp数组)应该是这样的
在这里插入图片描述

此时大家应该发现了,这不就是斐波那契数列么!

唯一的区别是,没有讨论dp[0]应该是什么,因为dp[0]在本题没有意义!

代码实现

class Solution {
public:
    int climbStairs(int n) {
        vector<int> dp(n+1);
        dp[0]=1;
        dp[1]=1;
        for(int i=2;i<=n;i++){
            dp[i]=dp[i-1]+dp[i-2];
        }
        return dp[n];
    }
};

思考总结

这道题目和动态规划:斐波那契数题目基本是一样的,但是会发现本题相比动态规划:斐波那契数难多了,为什么呢?

关键是 动态规划:斐波那契数题目描述就已经把动规五部曲里的递归公式和如何初始化都给出来了,剩下几部曲也自然而然的推出来了。

而本题,就需要逐个分析了,大家现在应该初步感受出关于动态规划动规五部曲了。

简单题是用来掌握方法论的,例如昨天斐波那契的题目够简单了吧,但昨天和今天可以使用一套方法分析出来的,这就是方法论!


746. 使用最小花费爬楼梯

题目链接🔥
给你一个整数数组 cost ,其中 cost[i] 是从楼梯第 i 个台阶向上爬需要支付的费用。一旦你支付此费用,即可选择向上爬一个或者两个台阶。
你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。
请你计算并返回达到楼梯顶部的最低花费。

示例 1:
输入:cost = [10,15,20]
输出:15
解释:你将从下标为 1 的台阶开始。

  • 支付 15 ,向上爬两个台阶,到达楼梯顶部。
    总花费为 15 。

示例 2:
输入:cost = [1,100,1,1,1,100,1,1,100,1]
输出:6
解释:你将从下标为 0 的台阶开始。

  • 支付 1 ,向上爬两个台阶,到达下标为 2 的台阶。
  • 支付 1 ,向上爬两个台阶,到达下标为 4 的台阶。
  • 支付 1 ,向上爬两个台阶,到达下标为 6 的台阶。
  • 支付 1 ,向上爬一个台阶,到达下标为 7 的台阶。
  • 支付 1 ,向上爬两个台阶,到达下标为 9 的台阶。
  • 支付 1 ,向上爬一个台阶,到达楼梯顶部。

总花费为 6 。

思路分析

  1. 确定dp数组以及下标的含义

使用动态规划,就要有一个数组来记录状态,本题只需要一个一维数组dp[i]就可以了。

dp[i]的定义:到达第i台阶所花费的最少体力为dp[i]。

对于dp数组的定义,大家一定要清晰!

  1. 确定递推公式

可以有两个途径得到dp[i],一个是dp[i-1] 一个是dp[i-2]。

dp[i - 1] 跳到 dp[i] 需要花费 dp[i - 1] + cost[i - 1]。

dp[i - 2] 跳到 dp[i] 需要花费 dp[i - 2] + cost[i - 2]。

那么究竟是选从dp[i - 1]跳还是从dp[i - 2]跳呢?

一定是选最小的,所以dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);

  1. dp数组如何初始化

看一下递归公式,dp[i]由dp[i - 1],dp[i - 2]推出,既然初始化所有的dp[i]是不可能的,那么只初始化dp[0]和dp[1]就够了,其他的最终都是dp[0]dp[1]推出。

那么 dp[0] 应该是多少呢? 根据dp数组的定义,到达第0台阶所花费的最小体力为dp[0],那么有同学可能想,那dp[0] 应该是 cost[0],例如 cost = [1, 100, 1, 1, 1, 100, 1, 1, 100, 1] 的话,dp[0] 就是 cost[0] 应该是1。

这里就要说明本题力扣为什么改题意,而且修改题意之后 就清晰很多的原因了。

新题目描述中明确说了 “你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。” 也就是说 到达 第 0 个台阶是不花费的,但从 第0 个台阶 往上跳的话,需要花费 cost[0]。

所以初始化 dp[0] = 0,dp[1] = 0;

  1. 确定遍历顺序

最后一步,递归公式有了,初始化有了,如何遍历呢?

本题的遍历顺序其实比较简单,简单到很多同学都忽略了思考这一步直接就把代码写出来了。

因为是模拟台阶,而且dp[i]由dp[i-1]dp[i-2]推出,所以是从前到后遍历cost数组就可以了。

  1. 举例推导dp数组

拿示例2:cost = [1, 100, 1, 1, 1, 100, 1, 1, 100, 1] ,来模拟一下dp数组的状态变化,如下:

在这里插入图片描述

代码实现

class Solution {
public:
    int minCostClimbingStairs(vector<int>& cost) {
        vector<int> dp(cost.size()+1);
        dp[0]=0;
        dp[1]=0;
        for(int i=2;i<dp.size();i++){
            dp[i]=min(dp[i-1]+cost[i-1],dp[i-2]+cost[i-2]);
        }
        return dp[dp.size()-1];
    }
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/985832.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【虚拟机开不了】linux、centOS虚拟机出现entering emergency mode解决方案

按他的操作输入journalctl之后输入shiftg到日志最后查看报错发现是xfs&#xff08;dm-0有问题&#xff09; xfs_repair -v -L /dev/dm-0 reboot解决问题

生信豆芽菜-XGboost构建诊断模型

网址&#xff1a;http://www.sxdyc.com/xgboostBuilds 1、准备数据 训练集表达谱数据 训练集样本分组数据 验证集表达谱数据 验证集样本分组数据 2、提交等待运行结果即可 当然&#xff0c;如果不清楚数据是什么样的&#xff0c;可以选择下载我们的示例数据&#…

PostMan传时间参数一次性发送多次请求

文章目录 1. Date类型的参数&#xff0c; "date": "2023-09-07 22:01:51"格式会报错2. 在Pre-request Script预置时间3. 使用postman一次性发送多次请求 1. Date类型的参数&#xff0c; “date”: "2023-09-07 22:01:51"格式会报错 2. 在Pre-req…

NumPy模块:Python科学计算神器之一

⭐️⭐️⭐️⭐️⭐️欢迎来到我的博客⭐️⭐️⭐️⭐️⭐️ 🐴作者:秋无之地 🐴简介:CSDN爬虫、后端、大数据领域创作者。目前从事python爬虫、后端和大数据等相关工作,主要擅长领域有:爬虫、后端、大数据开发、数据分析等。 🐴欢迎小伙伴们点赞👍🏻、收藏⭐️、…

巨人互动|Google海外户Google分析的基础概念

Google Analytics&#xff08;谷歌分析&#xff09;是最受欢迎的网站分析工具之一。它为网站管理员提供了深入了解其网站访问者的机会&#xff0c;并通过数据分析提供有关网站流量、用户行为和转化率的洞察。 1、跟踪代码&#xff08;Tracking Code&#xff09; 跟踪代码是嵌入…

网络技术二十二:NATPPP

NAT 转换流程 产生背景 定义 分类 常用命令 PPP PPP会话建立过程 认证 PPP会话流程

pdf怎么转换成dwg格式?简单转换方法分享

当我们需要在CAD中编辑PDF文件中的向量图形时&#xff0c;将PDF转换成DWG格式是一个非常好的选择。因为PDF是一种非常流行的文档格式&#xff0c;很多时候我们会接收到PDF文件&#xff0c;但是PDF文件中的向量图形无法直接在CAD中编辑。而将PDF转换成DWG格式后&#xff0c;就可…

米贸搜什么是网站排名流量

当谈到数字营销时&#xff0c;你的网站应该作为线上营销的中心枢纽。包括&#xff1a;Ads付费广告、EDM邮件营销、SEO搜索引擎优化等都旨在吸引用户访问你的网站&#xff0c;并在网站上进行深度转化。 被广泛应用且最有效的营销策略之一就是SEO&#xff0c;流量排名是衡量网站受…

Editplus小技巧:一次删除连续的多个空格

Editplus小技巧&#xff1a; 一次删除连续的多个空格 AltDel 请看上图&#xff0c;文件中的多个空格 请看上图&#xff0c;使用快捷键很快就删除了&#xff0c;有点Vim的感觉&#xff0c;爽&#xff01; 查看Editplus更多的快捷键&#xff1a; Tools>>Preferences 如…

学习Harmony之前必了解的术语,否则一脸懵

以下开发前必须了解 1. HarmonyOS SDK --- 官方SDK 2. DevEco Studio 官方开发工具 DevEco Studio 3.1配套支持HarmonyOS 3.1版本及以上的应用及服务开发&#xff0c;提供了代码智能编辑、低代码开发、双向预览等功能&#xff0c;以及轻量构建工具DevEco Hvigor 、本地模…

WMS系统中的出入库实时监控

一、定义&#xff1a; 出入库实时监控是指通过仓储管理系统&#xff08;WMS&#xff09;对仓库内部的物流活动进行实时跟踪、监控和控制的过程。它涉及到对货物的进出仓库、货位的变动、库存的数量和状态等信息的及时记录和更新&#xff0c;以便企业能够准确掌握库存情况、优化…

USB Server集中管控加密狗,浙江省电力设计院正在用

近日&#xff0c;软件加密狗的分散管理和易丢失性&#xff0c;给拥有大量加密狗的浙江省电力设计院带来了一系列的问题。好在浙江省电力设计院带及时使用了朝天椒USB Server方案&#xff0c;实现了加密狗的集中安全管控&#xff0c;避免了加密狗因为管理不善和遗失可能带来的巨…

智能配电房管理

智能配电房管理依托电易云-智慧电力物联网&#xff0c;利用先进技术手段&#xff0c;对配电房进行智能化、自动化的管理&#xff0c;以提高配电房的安全性、可靠性和效率。 智能配电房管理包括&#xff1a; 1.实时监测&#xff1a;通过传感器、监控设备等手段&#xff0c;对配…

小程序:实现翻页功能(解决数据过载)

效果 核心代码 ①wxml设置翻页标签 <view class"pagination" wx:if"{{list.length>0}}"> <view class"page-button" bindtap"prevPage">上一页</view> <view class"page-info">{{ page }}<…

Friend.tech热潮未过,在推特刷屏的TipCoin又是个啥?

Web3社交赛道风起云涌&#xff0c;Friend.tech的热潮还没过&#xff0c;最近又有一款名为Tip Coin社交项目在X&#xff08;前Twitter&#xff09;开始刷屏。 TipCoin作为一款社交类区块链项目依托于X平台&#xff0c;用户通过在X平台上发布内容来进行“挖矿”&#xff0c;获得项…

无涯教程-JavaScript - BITAND函数

描述 BITAND函数返回两个数字的按位" AND"。 语法 BITAND (number1, number2)争论 Argument描述Required/Optionalnumber1 Must be in decimal form and greater than or equal to 0.Requirednumber2Must be in decimal form and greater than or equal to 0.Req…

Vuepress样式修改内容宽度

1、相关文件 一般所在目录node_modules\vuepress\theme-default\styles\wrapper.styl 2、调整宽度&#xff0c;截图中是已经调整好的&#xff0c;在我电脑上显示刚刚好。

(其他) 剑指 Offer 46. 把数字翻译成字符串 ——【Leetcode每日一题】

❓ 剑指 Offer 46. 把数字翻译成字符串 难度&#xff1a;中等 给定一个数字&#xff0c;我们按照如下规则把它翻译为字符串&#xff1a;0 翻译成 “a” &#xff0c;1 翻译成 “b”&#xff0c;……&#xff0c;11 翻译成 “l”&#xff0c;……&#xff0c;25 翻译成 “z”。…

使用git把本地项目关联远程代码仓库,并推送到远程仓库

你在本地新建了一个项目&#xff0c;写好了代码&#xff0c;但是没有关联远程仓库&#xff0c;怎么关联并上传呢&#xff1f; 你要先去gitee创建一个代码仓库&#xff0c;然后复制http地址。 首次提交项目代码到一个新建的远程仓库&#xff1a; 方式一(推荐)&#xff1a; 1…

测试工程师面试题,你都遇到过哪些呢?

其实在软件测试领域面试题多余牛毛&#xff0c;采取疯狂刷题的方式确实可以解决不少面试中可能碰到的问题&#xff0c;而且可以学到一些知识。但是&#xff0c;有可能刷的面试题一个都问不到。 如何才能解除上述尴尬&#xff0c;一定要记得不要脱离一个核心目的&#xff1a;找…