算法训练营day42|动态规划 part04:0-1背包 (01背包问题基础(两种解决方案)、LeetCode 416.分割等和子集)

news2025/1/17 17:56:42

文章目录

  • 01背包----二维dp数组
  • 01背包----滚动数组
  • 416.分割等和子集
    • 思路分析
    • 背包解法
    • 思考总结

有n件物品和一个最多能背重量为w 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。
完全背包又是也是01背包稍作变化而来,即:完全背包的物品数量是无限的。
所以背包问题的理论基础重中之重是01背包,一定要理解透!

在下面的讲解中,我举一个例子:
背包最大重量为4。
物品为:

重量价值
物品0115
物品1320
物品2430

问背包能背的物品最大价值是多少?

01背包----二维dp数组

依然用动规五部曲。

  1. 确定dp数组以及下标的含义

对于背包问题,有一种写法, 是使用二维数组,即dp[i][j] 表示从下标为[0-i]的物品里任意取,放进容量为j的背包,dp[i][j]表示当前价值总和。

  1. 确定递推公式

再回顾一下dp[i][j]的含义:从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少。

那么可以有两个方向推出来dp[i][j],

不放物品i:由dp[i - 1][j]推出,即背包容量为j,里面不放物品i的最大价值,此时dp[i][j]就是dp[i - 1][j]。(其实就是当物品i的重量大于背包j的重量时,物品i无法放进背包中,所以背包内的价值依然和前面相同。)
放物品i:由dp[i - 1][j - weight[i]]推出,dp[i - 1][j - weight[i]] 为背包容量为j - weight[i]的时候不放物品i的最大价值,那么dp[i - 1][j - weight[i]] + value[i] (物品i的价值),就是背包放物品i得到的最大价值
所以递归公式: dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);

  1. dp数组如何初始化

首先从dp[i][j]的定义出发,如果背包容量j为0的话,即dp[i][0],无论是选取哪些物品,背包价值总和一定为0。

状态转移方程 dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 可以看出i 是由 i-1 推导出来,那么i为0的时候就一定要初始化。

dp[0][j],即:i为0,存放编号0的物品的时候,各个容量的背包所能存放的最大价值。

那么很明显当 j < weight[0]的时候,dp[0][j] 应该是 0,因为背包容量比编号0的物品重量还小。

当j >= weight[0]时,dp[0][j] 应该是value[0],因为背包容量放足够放编号0物品。

在这里插入图片描述
dp[i][j] 是由左上方数值推导出来了,那么 其他下标初始为什么数值都可以,因为都会被覆盖。

初始-1,初始-2,初始100,都可以!

但只不过一开始就统一把dp数组统一初始为0,更方便一些。
在这里插入图片描述

整体初始化代码:

// 初始化 dp
vector<vector<int>> dp(weight.size(), vector<int>(bagweight + 1, 0));
for (int j = weight[0]; j <= bagweight; j++) {
    dp[0][j] = value[0];
}
  1. 确定遍历顺序

在如下图中,可以看出,有两个遍历的维度:物品与背包重量

先遍历 物品还是先遍历背包重量呢?
其实都可以!! 但是先遍历物品更好理解。

递归公式中可以看出dp[i][j]是靠dp[i-1][j]和dp[i - 1][j - weight[i]]推导出来的。
for循环遍历的次序不同,但是dp[i][j]所需要的数据就是左上角,根本不影响dp[i][j]公式的推导!

但先遍历物品再遍历背包这个顺序更好理解。

  1. 举例推导dp数组

来看一下对应的dp数组的数值,如图:
在这里插入图片描述

void test_2_wei_bag_problem1() {
    vector<int> weight = {1, 3, 4};
    vector<int> value = {15, 20, 30};
    int bagweight = 4;

    // 二维数组
    vector<vector<int>> dp(weight.size(), vector<int>(bagweight + 1, 0));

    // 初始化
    for (int j = weight[0]; j <= bagweight; j++) {
        dp[0][j] = value[0];
    }

    // weight数组的大小 就是物品个数
    for(int i = 1; i < weight.size(); i++) { // 遍历物品
        for(int j = 0; j <= bagweight; j++) { // 遍历背包容量
            if (j < weight[i]) dp[i][j] = dp[i - 1][j];
            else dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);

        }
    }

    cout << dp[weight.size() - 1][bagweight] << endl;
}

int main() {
    test_2_wei_bag_problem1();
}

计算i,j值的时候,当我们判断如果本来总空间都不够放入该物品那么肯定就放不下了,直接让它等于上一个放物品时候的价值。当发现当前要放入的物品,是比总空间小的话,那么可能扔出一些物品还是能放进去的,这个时候我们再比较。


01背包----滚动数组

动规五部曲分析如下:

  1. 确定dp数组的定义

在一维dp数组中,dp[j]表示:容量为j的背包,所背的物品价值可以最大为dp[j]。

  1. 一维dp数组的递推公式

dp[j]为 容量为j的背包所背的最大价值,那么如何推导dp[j]呢?

dp[j]可以通过dp[j - weight[i]]推导出来,dp[j - weight[i]]表示容量为j - weight[i]的背包所背的最大价值。

dp[j - weight[i]] + value[i] 表示 容量为 j - 物品i重量 的背包 加上 物品i的价值。(也就是容量为j的背包,放入物品i了之后的价值即:dp[j])

此时dp[j]有两个选择,一个是取自己dp[j] 相当于 二维dp数组中的dp[i-1][j],即不放物品i,一个是取dp[j - weight[i]] + value[i],即放物品i,指定是取最大的,毕竟是求最大价值,

所以递归公式为:

dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
  1. 一维dp数组如何初始化

关于初始化,一定要和dp数组的定义吻合,否则到递推公式的时候就会越来越乱。

dp[j]表示:容量为j的背包,所背的物品价值可以最大为dp[j],那么dp[0]就应该是0,因为背包容量为0所背的物品的最大价值就是0。

那么dp数组除了下标0的位置,初始为0,其他下标应该初始化多少呢?

看一下递归公式:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

dp数组在推导的时候一定是取价值最大的数,如果题目给的价值都是正整数那么非0下标都初始化为0就可以了。

这样才能让dp数组在递归公式的过程中取的最大的价值,而不是被初始值覆盖了。

那么我假设物品价值都是大于0的,所以dp数组初始化的时候,都初始为0就可以了。

  1. 一维dp数组遍历顺序

代码如下:

for(int i = 0; i < weight.size(); i++) { // 遍历物品
    for(int j = bagWeight; j >= weight[i]; j--) { // 遍历背包容量
        dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

    }
}

二维dp遍历的时候,背包容量是从小到大,而一维dp遍历的时候,背包是从大到小。

为什么呢?

倒序遍历是为了保证物品i只被放入一次!。但如果一旦正序遍历了,那么物品0就会被重复加入多次!

举一个例子:物品0的重量weight[0] = 1,价值value[0] = 15

如果正序遍历

dp[1] = dp[1 - weight[0]] + value[0] = 15

dp[2] = dp[2 - weight[0]] + value[0] = 30

此时dp[2]就已经是30了,意味着物品0,被放入了两次,所以不能正序遍历。

为什么倒序遍历,就可以保证物品只放入一次呢?

倒序就是先算dp[2]

dp[2] = dp[2 - weight[0]] + value[0] = 15 (dp数组已经都初始化为0)

dp[1] = dp[1 - weight[0]] + value[0] = 15

所以从后往前循环,每次取得状态不会和之前取得状态重合,这样每种物品就只取一次了。

那么问题又来了,为什么二维dp数组历的时候不用倒序呢?

因为对于二维dp,dp[i][j]都是通过上一层即dp[i - 1][j]计算而来,本层的dp[i][j]并不会被覆盖!

(如何这里读不懂,大家就要动手试一试了,空想还是不靠谱的,实践出真知!)

再来看看两个嵌套for循环的顺序,代码中是先遍历物品嵌套遍历背包容量,那可不可以先遍历背包容量嵌套遍历物品呢?

不可以!

因为一维dp的写法,背包容量一定是要倒序遍历(原因上面已经讲了),如果遍历背包容量放在上一层,那么每个dp[j]就只会放入一个物品,即:背包里只放入了一个物品。

倒序遍历的原因是,本质上还是一个对二维数组的遍历,并且右下角的值依赖上一层左上角的值,因此需要保证左边的值仍然是上一层的,从右向左覆盖。

(这里如果读不懂,就再回想一下dp[j]的定义,或者就把两个for循环顺序颠倒一下试试!)

所以一维dp数组的背包在遍历顺序上和二维其实是有很大差异的!,这一点大家一定要注意。

举例推导dp数组
一维dp,分别用物品0,物品1,物品2 来遍历背包,最终得到结果如下:
在这里插入图片描述

void test_1_wei_bag_problem() {
    vector<int> weight = {1, 3, 4};
    vector<int> value = {15, 20, 30};
    int bagWeight = 4;

    // 初始化
    vector<int> dp(bagWeight + 1, 0);
    for(int i = 0; i < weight.size(); i++) { // 遍历物品
        for(int j = bagWeight; j >= weight[i]; j--) { // 遍历背包容量
            dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
        }
    }
    cout << dp[bagWeight] << endl;
}

int main() {
    test_1_wei_bag_problem();
}

416.分割等和子集

题目链接🔥🔥
给定一个只包含正整数的非空数组。是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。
注意: 每个数组中的元素不会超过 100 数组的大小不会超过 200

示例 1:
输入: [1, 5, 11, 5]
输出: true
解释: 数组可以分割成 [1, 5, 5] 和 [11].

示例 2:
输入: [1, 2, 3, 5]
输出: false
解释: 数组不能分割成两个元素和相等的子集.

提示:
1 <= nums.length <= 200
1 <= nums[i] <= 100

思路分析

本题中我们要使用的是01背包,因为元素我们只能用一次。

回归主题:首先,本题要求集合里能否出现总和为 sum / 2 的子集。

那么来一一对应一下本题,看看背包问题如何来解决。

只有确定了如下四点,才能把01背包问题套到本题上来。

  • 背包的体积为sum / 2
  • 背包要放入的商品(集合里的元素)重量为 元素的数值,价值也为元素的数值
  • 背包如果正好装满,说明找到了总和为 sum / 2 的子集。
  • 背包中每一个元素是不可重复放入。

背包解法

  1. 确定dp数组以及下标的含义

01背包中,dp[j] 表示: 容量为j的背包,所背的物品价值最大可以为dp[j]。

本题中每一个元素的数值既是重量,也是价值。

套到本题,dp[j]表示 背包总容量(所能装的总重量)是j,放进物品后,背的最大重量为dp[j]。

那么如果背包容量为target, dp[target]就是装满 背包之后的重量,所以 当 dp[target] == target 的时候,背包就装满了。

  1. 确定递推公式

01背包的递推公式为:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

本题,相当于背包里放入数值,那么物品i的重量是nums[i],其价值也是nums[i]。

所以递推公式:dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]);

  1. dp数组如何初始化

在01背包,一维dp如何初始化,已经讲过,

从dp[j]的定义来看,首先dp[0]一定是0。

如果题目给的价值都是正整数那么非0下标都初始化为0就可以了,如果题目给的价值有负数,那么非0下标就要初始化为负无穷。

这样才能让dp数组在递推的过程中取得最大的价值,而不是被初始值覆盖了。

本题题目中 只包含正整数的非空数组,所以非0下标的元素初始化为0就可以了。

代码如下:

// 题目中说:每个数组中的元素不会超过 100,数组的大小不会超过 200
// 总和不会大于20000,背包最大只需要其中一半,所以10001大小就可以了
vector<int> dp(10001, 0);

4.确定遍历顺序

如果使用一维dp数组,物品遍历的for循环放在外层,遍历背包的for循环放在内层,且内层for循环倒序遍历!
5. 举例推导dp数组

dp[j]的数值一定是小于等于j的。

如果dp[j] == j 说明,集合中的子集总和正好可以凑成总和j,理解这一点很重要。

用例1,输入[1,5,11,5] 为例,如图:
在这里插入图片描述
最后dp[11] == 11,说明可以将这个数组分割成两个子集,使得两个子集的元素和相等。

class Solution {
public:
    bool canPartition(vector<int>& nums) {
        int sum=0;
        for(int i=0;i<nums.size();i++){
            sum+=nums[i];
        }
        if (sum % 2 == 1) return false;
        int target=sum/2;
        vector<int> dp(target+1,0);
        for(int i=0;i<nums.size();i++){
            for(int j=target;j>=nums[i];j--){
                dp[j]=max(dp[j],dp[j-nums[i]]+nums[i]);
            }
        }
        if (dp[target] == target) return true;
        return false;
    }
};

思考总结

01背包相对于本题,主要要理解,题目中物品是nums[i],重量是nums[i],价值也是nums[i],背包体积是sum/2。

看代码的话,就可以发现,基本就是按照01背包的写法来的。


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/983196.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

深入解析Spring Boot中最常用注解的使用方式(下篇)

摘要&#xff1a;本文是《深入解析Spring Boot中最常用注解的使用方式》的下篇内容&#xff0c;将继续介绍Spring Boot中其他常用的注解的使用方式&#xff0c;并通过代码示例进行说明&#xff0c;帮助读者更好地理解和运用Spring Boot框架。 目录 第二部分&#xff1a;常见的容…

浏览器开发者模式下只显示 XHR 请求应该怎么办

浏览器开发者模式下只显示 XHR 请求应该怎么办 问题分析 问题 F12打开浏览器的开发者模式&#xff0c;然后点击 Network&#xff0c;只显示 XHR 请求应该怎么办 分析 打开漏斗&#xff0c;选择All 模式

怎么给视频加背景音乐?学会这三种方法轻松配乐

给视频添加配乐可以带来多重好处。首先&#xff0c;配乐可以增强视频的氛围和情感&#xff0c;帮助观众更好地投入其中&#xff0c;感受视频所要表达的情感。不同的音乐可以传达不同的情感&#xff0c;例如悲伤、欢乐、紧张等等&#xff0c;可以让观众更深入地体验视频内容。教…

2023年9月NPDP产品经理国际认证报名,找弘博创新

产品经理国际资格认证NPDP是新产品开发方面的认证&#xff0c;集理论、方法与实践为一体的全方位的知识体系&#xff0c;为公司组织层级进行规划、决策、执行提供良好的方法体系支撑。 【认证机构】 产品开发与管理协会&#xff08;PDMA&#xff09;成立于1979年&#xff0c;是…

vue响应式原理

vue响应式原理 vue响应式原理vue2响应式原理目标对象为数组时 vue3响应式原理Vue3和Vue2在响应式系统方面的对比数据劫持的方式支持数据劫持的数据类型Vue3响应式系统显著优点是&#xff1a; vue响应式原理 无论vue2和vue3响应式都是通过观察者模式&#xff08;发布订阅模式&a…

技术分享 | 强化学习,让机器像人类一样自我学习

如果说近年来有什么是各行各业共通的话题&#xff0c;那就一定是强化学习&#xff0c;这是一个让机器能够像人类一样通过与环境互动来学习和改进自己决策的领域。它不仅令人兴奋&#xff0c;而且具有革命性的潜力&#xff0c;可以改变我们生活和工作的方式。 随着计算能力的不断…

perf与simpleperf

对事件进行采样&#xff0c;然后根据采样频率&#xff0c;评估各个函数的调用频率。可以用来分析CPU cache&#xff0c;CPU迁移&#xff0c;指令周期等各种硬件事件&#xff0c;他也可以对感兴趣的事件进行动态追踪。 效果&#xff1a; cat available_events | grep receive p…

YashanDB:潜心实干,数据库核心技术突破没有捷径可走

都说数据库是三大基础软件中的一块硬骨头&#xff0c;技术门槛高、研发周期长、工程要求高&#xff0c;市场长期被几大巨头所把持。 因此&#xff0c;实现突破一直是中国数据库产业的夙愿。自上个世纪80年代起&#xff0c;中国数据库产业走过艰辛坎坷的四十余载&#xff0c;终…

CocosCreator3.8研究笔记(九)CocosCreator 场景资源的理解

相信很多朋友都想知道&#xff0c; Cocos Creator 资源的定义&#xff1f; Cocos Creator 常见的资源包含哪些&#xff1f;Cocos Creator 资源的管理机制是什么样的&#xff1f; Cocos Creator 中所有继承自 Asset 的类型都统称资源 &#xff0c;例如&#xff1a;Texture2D、Sp…

springboot项目实现helloworld

使用Spring官方源创建项目&#xff08;推荐&#xff09; 缺陷&#xff1a;镜像在国外下载速度有点慢 选择配置 选择版本 实现HelloWorld 删除部分不重要的文件 idea隐藏文件 使用云原生的方式创建项目&#xff08;spring官方源&#xff09; 访问地址&#xff1a;Spring Init…

基于Java+SpringBoot+Vue前后端分离科研项目验收管理系统设计和实现

博主介绍&#xff1a;✌全网粉丝30W,csdn特邀作者、博客专家、CSDN新星计划导师、Java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精彩专…

服务端 TCP 连接的 TIME_WAIT 过多问题的分析与解决

https://blog.csdn.net/zxlyx/article/details/120397006 本文给出一个 TIME_WAIT 状态的 TCP 连接过多的问题的解决思路&#xff0c;非常典型&#xff0c;大家可以好好看看&#xff0c;以后遇到这个问题就不会束手无策了。 问题描述 模拟高并发的场景&#xff0c;会出现批量…

CS架构和BS架构的联系与区别(零基础理解)

文章目录 网络编程CS架构BS架构CS和BS的区别C/S架构优缺点B/S架构优缺点 网络编程 首先要了解CS架构和BS架构就需要了解一下什么是网络编程? 大家刚接触编程时,往往是在自己的电脑的编辑器上进行代码的编写,说简单的就是以前我们书写的代码就像单机版游戏一样,只能自己玩,不能…

VSRS4.0 安装与配置

0 引言 介绍&#xff1a;VSRS的定义参阅官方论文&#xff0c;项目引入VSRS来解决目前亟需解决的问题(基于两视点的虚拟视点合成)。 1 下载VSRS 1.1 通过TortoiseSVN下载最新版VSRS VSRS can be accessed from SVN server server: https://svn.multimedia.edu.pl/vsrs user:…

PyTorch基础知识(1)— PyTorch框架介绍和安装步骤

前言&#xff1a;Hello大家好&#xff0c;我是小哥谈。PyTorch是一个开源的深度学习框架&#xff0c;它基于Python语言&#xff0c;并提供了高级的神经网络接口&#xff0c;可以用于构建和训练各种深度学习模型。它的设计理念是灵活性和易用性&#xff0c;并且提供了动态图的特…

C++入门介绍之“栈”

1.1栈的定义 栈&#xff08;stack)是一种只能在一端进行插入或删除的线性表 下面是一些基础概念 栈顶&#xff08;top) : 表中允许进行插入、删除操作的线性表栈底&#xff08;bottom&#xff09;&#xff1a;表的另一端空栈 &#xff1a;栈中没有数据元素进栈/入栈&#xf…

如何统计网站的访问量

本文介绍的是使用redis的HyperLoglog实现uv的统计功能。 背景 首先我们先明确一下uv这个名词代表的实际意义。uv代表的是通过网页访问浏览的人数&#xff0c;和文章的阅读量差不多&#xff0c;但是需要注意的是&#xff0c;一个人即使是多次访问&#xff0c;也只算一次。 所…

开发一个android应用需要哪些库?

目录 开发应用常用库 沉浸式体验 下拉刷新 数据库 网络访问 升级 开发应用常用库 随着手机普及&#xff0c;应用无处不在&#xff0c;我们生活也离不开应用了。 那么&#xff0c;如果你想从零开始做一个应用&#xff0c;我们一般会经过哪些阶段&#xff0c;用到哪些库呢…

揭秘外卖平台的附近公里设计

背景 相信大家都有点外卖的时候去按照附近公里排序的习惯&#xff0c;那附近的公里是怎么设计的呢&#xff1f;今天shigen带你一起揭秘。 分析 我们先明确一下需求&#xff0c;每个商家都有一个地址对吧&#xff0c;我们也有一个地址&#xff0c;我们点餐的时候&#xff0c;…

【Spring 事务和事务传播机制】

目录 1 事务概述 1.1 为什么需要事务 1.2 事务的特性 1.3 Spring 中事务的实现 2 Spring 声明式事务 2.1 Transactional 2.2 Transactional 的作用范围 2.3 Transactional 的各种参数 2.3.1 ioslation 2.4 事务发生了异常&#xff0c;也不回滚的情况 异常被捕获时 3 事务的传…