第一次安装Pytorch,刚开始安装的时候装错了CUDA的版本号
这里最高支持12.2.138, 但是我装了一个12.2.140的CUDA,导致不兼容我在测试时发现
import torch
# if torch.cuda.is_available():
# print("GPU可用")
# else:
# print("GPU不可用")
# current_device = torch.cuda.current_device()
# device_name = torch.cuda.get_device_name(current_device)
# print(f"当前GPU设备索引: {current_device}")
# print(f"当前GPU设备名称: {device_name}")
print("PyTorch版本:", torch.__version__)
print(torch.cuda.is_available())
# print("PyTorch版本:", torch.__version__)
# # 创建一个简单的张量
# x = torch.tensor([1.0, 2.0, 3.0])
# print("张量x:", x)
输出是False(GPU不可用),后来检查中发现是CUDA版本不兼容,所以我又把之前的pytorch全部卸载了,又重新装的低版本的CUDA,然后再装pytorch,最后成功了,显示True(GPU可用),写这篇博客的意义在于记录一下安装Pytorch的过程,避免以后遗忘。
过程:
1.首先在命令行窗口中,输入
python --version
查看自己的python版本
2.
安装PyTorch通常涉及选择正确的PyTorch版本以及安装适合您的操作系统和硬件配置的PyTorch版本。以下是在常见操作系统上安装PyTorch的一般步骤:
注意:PyTorch的安装方式和要求可能会随时间和版本的变化而有所不同。确保在安装之前查看PyTorch官方网站以获取最新的安装说明和要求。
使用pip安装PyTorch(CPU版本)
如果您只想在CPU上使用PyTorch,可以使用pip来安装它。以下是一般步骤:
1.打开命令行或终端窗口。
2.在终端中输入以下命令:
pip install torch
这将安装最新版本的PyTorch(CPU版本)。
使用conda安装PyTorch(CPU版本)
如果您使用Anaconda或Miniconda作为Python环境管理器,可以使用conda来安装PyTorch。以下是一般步骤:
1.打开命令行或终端窗口。
2.创建一个新的conda环境(可选,但推荐):
conda create -n myenv python=3.8 # 创建一个名为myenv的Python 3.8环境
conda activate myenv # 激活新环境
3.安装PyTorch(CPU版本):
conda install pytorch torchvision torchaudio cpuonly -c pytorch
使用pip安装PyTorch(GPU版本)
如果您要在支持CUDA的GPU上使用PyTorch,可以使用pip来安装PyTorch GPU版本。首先,确保您的系统上已经安装了NVIDIA驱动和CUDA工具包。
1.打开命令行或终端窗口。
2.在终端中输入以下命令:
pip install torch torchvision torchaudio
这将安装最新版本的PyTorch(GPU版本),如果您的GPU和CUDA版本与PyTorch兼容的话。
使用conda安装PyTorch(GPU版本)
如果您使用Anaconda或Miniconda,并且要在支持CUDA的GPU上使用PyTorch,可以使用conda来安装PyTorch。同样,请确保您的系统上已经安装了NVIDIA驱动和CUDA工具包。
1.打开命令行或终端窗口。
2.创建一个新的conda环境(可选,但推荐):
conda create -n myenv python=3.8 # 创建一个名为myenv的Python 3.8环境
conda activate myenv # 激活新环境
3.安装PyTorch(GPU版本):
conda install pytorch torchvision torchaudio cudatoolkit=11.1 -c pytorch -c nvidia
请注意,上述命令中的cudatoolkit版本应与您的CUDA版本匹配。您可以使用nvcc --version命令来查看您的CUDA版本。
安装完成后,您可以在Python环境中导入PyTorch并开始使用它。记得查看官方文档以获取更多信息和示例代码。
————————————————————————————————————————————————————————————————————————————————————————
以上是安装Pytorch的过程,但是在此之前我们需要先安装CUDA,具体操作可以参考👉安装CUDA这篇文章。
CUDA下载网站
进去之后点这里
下载旧版本的CUDA(一般不要下载最新版,因为会有版本不兼容的问题)
这里我下的是11.8.0
后续的步骤就可以参考👉安装CUDA这篇文章。
ps:当前最新的cudatoolkit为11.8.0,查询网站👉cudatoolkit
下完CUDA后就需要下载Pytorch了,下载网站👉Pytorch下载网站
切记:下载pytorch的版本要参考着CUDA来下载,否则会导致二者不兼容。
下面是我下载pytorch的配置:
因为我的CUDA就是11.8.0的,所以我选择了CUDA 11.8这个选项。
之后复制他的command,去vscode的虚拟环境里下载(命令行窗口应该可以,但是一定也要开启虚拟环境),具体开启虚拟环境的步骤
conda activate myenv (激活虚拟环境)
conda init powershell (初始化powershell环境)
一般只需要运行第一行的代码即可开启虚拟环境
开启虚拟环境后前方会出现(myenv)的字样
例如:
这就代表着已经成功开启虚拟环境了,然后再在虚拟环境里用刚才复制的command代码来下载Pytorch,例如:
然后耐心等待下载完成即可。
要检查是否成功安装了PyTorch,您可以打开Python解释器(在命令行或终端中运行python命令)并尝试导入PyTorch。如果没有出现导入错误,那么您已成功安装PyTorch。
以下是一些示例代码,演示如何检查PyTorch的安装:
import torch
# 检查PyTorch版本
print("PyTorch版本:", torch.__version__)
# 创建一个简单的张量
x = torch.tensor([1.0, 2.0, 3.0])
print("张量x:", x)
如果您在运行这些代码时没有看到任何错误,并且能够成功导入PyTorch并创建张量,那么您的PyTorch安装就是成功的。
另外,您还可以运行以下命令来检查PyTorch是否已安装以及其版本:
python -c "import torch; print(torch.__version__)"
这将在命令行中输出PyTorch的版本号。如果成功显示版本号而没有导入错误,那么PyTorch已经成功安装并可用。
如果您在安装或导入PyTorch时遇到任何错误,可能需要检查安装过程中是否出现问题或根据错误消息解决问题。确保遵循官方文档和安装说明以确保正确的安装。
还可以通过运行代码
import torch
# if torch.cuda.is_available():
# print("GPU可用")
# else:
# print("GPU不可用")
current_device = torch.cuda.current_device()
device_name = torch.cuda.get_device_name(current_device)
print(f"当前GPU设备索引: {current_device}")
print(f"当前GPU设备名称: {device_name}")
print("PyTorch版本:", torch.__version__)
print(torch.cuda.is_available())
# print("PyTorch版本:", torch.__version__)
# # 创建一个简单的张量
# x = torch.tensor([1.0, 2.0, 3.0])
# print("张量x:", x)
来判断CUDA是否可以正常使用,如果输出
则代表你已经成功安装Pytorch和与之相匹配的CUDA了!
最后贴几个对我帮助很大的博客以及网站:
超详细GPU部署 (pytorch+tensorflow)博客
安装CUDA博客
pytorch 下载安装全流程详细教程
超链接下载地址(没用到)
CUDA 11.8.0下载地址
Pytorch下载地址
检查当前已安装的CUDA版本
查看电脑可以安装的CUDA最高版本,即你所安装的CUDA只能≤12.2.138(每人情况不同)