Hive电子商务消费行为分析项目

news2025/1/11 10:53:54

文章目录

  • 数据说明
  • 环境准备
  • 项目代码
    • 上传数据文件并创建数据表
    • 数据清洗
    • 数据可视化
      • 客户分析
      • 交易分析
      • 门店分析
      • 评价分析

数据说明

某零售企业的门店最近一年收集的数据

customer_details.csv:客户信息
transaction_details.csv:交易信息
store_details.csv:门店信息
store_review.csv:评价信息

在这里插入图片描述

环境准备

centos 7虚拟机,Hadoop+Hive+Zeppelin
启动Hadoop、Hive、Zeppelin

./hadoop/sbin/start-all.sh
nohup hive --service hiveserver2 &
./zeppelin09/bin/zeppelin-daemon.sh start

打开Zeppelin页面(hive为虚拟机名称,也可填虚拟机ip)

http://hive:8000/

在这里插入图片描述

项目代码

上传数据文件并创建数据表

进入到存放数据的虚拟机目录并查看文件信息

%sh
cd /workspace/hive/store/
wc -l customer_details.csv
wc -l store_details.csv
wc -l store_review.csv
wc -l transaction_details.csv
head -2 customer_details.csv
head -2 store_details.csv
head -2 store_review.csv
head -2 transaction_details.csv

在这里插入图片描述
将数据上传至hdfs目录

%sh
cd /workspace/hive/store/
hdfs dfs -rm -r -f -skipTrash /data/shopping/

hdfs dfs -mkdir -p /data/shopping/customer/
hdfs dfs -put customer_details.csv /data/shopping/customer/

hdfs dfs -mkdir -p /data/shopping/transaction/
hdfs dfs -put transaction_details.csv /data/shopping/transaction/

hdfs dfs -mkdir -p /data/shopping/store/
hdfs dfs -put store_details.csv /data/shopping/store/

hdfs dfs -mkdir -p /data/shopping/review/
hdfs dfs -put store_review.csv /data/shopping/review/

hdfs dfs -ls -R /data/shopping

在这里插入图片描述
创建hive数据表并载入数据

%hive
create database if not exists shopping;
use shopping;
create external table if not exists ext_customer_details(
    customer_id string,
    first_name string,
    last_name string,
    email string,
    gender string,
    address string,
    country string,
    language string,
    job string,
    credit_type string,
    credit_no string
)
row format serde 'org.apache.hadoop.hive.serde2.OpenCSVSerde'
location '/data/shopping/customer'
tblproperties("skip.header.line.count"="1")
%hive
use shopping;
create external table if not exists ext_transaction_details(
    transaction_id string,
    customer_id string,
    store_id string,
    price decimal(8,2),
    product string,
    purchase_date date,
    purchase_time string
)
row format serde 'org.apache.hadoop.hive.serde2.OpenCSVSerde'
location '/data/shopping/transaction'
tblproperties("skip.header.line.count"="1")
%hive
use shopping;
create external table if not exists ext_store_details(
    store_id string,
    store_name string,
    employee_number string
)
row format serde 'org.apache.hadoop.hive.serde2.OpenCSVSerde'
location '/data/shopping/store'
tblproperties("skip.header.line.count"="1")
%hive
use shopping;
create external table if not exists ext_store_review(
    transaction_id string,
    store_id string,
    review_score string
)
row format serde 'org.apache.hadoop.hive.serde2.OpenCSVSerde'
location '/data/shopping/review'
tblproperties("skip.header.line.count"="1")

数据清洗

%hive
create view if not exists vw_customer_details as select
customer_id,
first_name,
unbase64(last_name) as last_name,
unbase64(email) as email,
gender,
unbase64(address) as address,
country,job,credit_type,
unbase64(concat(unbase64(credit_no),'seed')) as credit_no
from ext_customer_details
%hive
create table if not exists transaction_details(
    transaction_id string,
    customer_id string,
    store_id string,
    price decimal(8,2),
    product string,
    purchase_date date,
    purchase_time string
)
partitioned by (purchase_month string)
%hive
set hive.exec.dynamic.partition=true;
set hive.exec.dynamic.partition.mode=nostrick;
with base as(
select transaction_id,customer_id,store_id,price,product,purchase_date,purchase_time,
from_unixtime(unix_timestamp(purchase_date,'yyyy-MM-dd'),'yyyy-MM') as purchase_month,
row_number() over(partition by transaction_id order by store_id) as rn
from ext_transaction_details
where customer_id<>'customer_id'
)
from base
insert overwrite table transaction_details partition(purchase_month)
select
if(rn=1,transaction_id,concat(transaction_id,'_fix',rn)) as transaction_id,
customer_id,store_id,price,product,purchase_date,purchase_time,purchase_month;
select transaction_id,customer_id,store_id,price,product,purchase_date,purchase_time,purchase_month from transaction_details where transaction_id like '%fix%';
%hive
select count(*) from ext_store_review r join ext_transaction_details t on
r.transaction_id=t.transaction_id and r.store_id=t.store_id
where review_score<>''
%hive
select count(*) from ext_store_review where review_score <>'';
%hive
create view if not exists vw_store_review as
select transaction_id,review_score from ext_store_review where review_score<>''

数据可视化

客户分析

最受客户欢迎的信用卡

%hive
select credit_type,count(distinct credit_no) as credit_cnt
from vw_customer_details group by country,credit_type order by credit_cnt desc;

在这里插入图片描述
排名前5的客户职业

%hive
select job,count(*) as pn from vw_customer_details group by job order by pn desc limit 5;

在这里插入图片描述
美国女性客户持有的排名前3的信用卡

%hive
select credit_type,count(*) as ct from vw_customer_details
where country='United States' and gender='Female'
group by credit_type order by ct desc limit 3;

在这里插入图片描述
按国家和性别进行客户统计

%hive
select count(*),country,gender from vw_customer_details group by country,gender;

在这里插入图片描述

交易分析

按月统计总收益

%hive
select sum(price) as revenue_mom,purchase_month from transaction_details group by purchase_month;

在这里插入图片描述
按季度统计总收益

%hive
with base as(select price,
concat_ws('-',substr(purchase_date,1,4),cast(ceil(month(purchase_date)/3.0)as string)) as year_quarter
from transaction_details)
select sum(price) as revenue_qoq,year_quarter from base group by year_quarter;

在这里插入图片描述
按年统计总收益

%hive
select sum(price) as revenue_mom,substr(purchase_date,1,4) as year
from transaction_details group by substr(purchase_date,1,4);

在这里插入图片描述
统计每周各天的总收益

%hive
select sum(price) as revenue_wow,date_format(purchase_date,'u') as weekday
from transaction_details group by date_format(purchase_date,'u');

在这里插入图片描述
按时间段统计平均收益和总收益

%hive
with base as(
select price, purchase_time, if(purchase_time like '%PM',
concat_ws(':',string(hour(from_unixtime(unix_timestamp(purchase_time,'hh:mm')))+12),
string(minute(from_unixtime(unix_timestamp(purchase_time,'hh:mm'))))),
from_unixtime(unix_timestamp(purchase_time,'hh:mm'),'HH:mm')) as time_format
from transaction_details
),
timeformat as (
select
purchase_time,price,
(cast(split(time_format,':')[0] as decimal(4,2))+ cast(split(time_format,':')[1] as decimal(4,2))/60)
as purchase_time_in_hrs
from base
),
timebucket as (
select
price,purchase_time, purchase_time_in_hrs,
if(purchase_time_in_hrs>5 and purchase_time_in_hrs <=8,'early morning',
if(purchase_time_in_hrs >8 and purchase_time_in_hrs <=11,'morning',
if(purchase_time_in_hrs>11 and purchase_time_in_hrs<=13,'noon',
if(purchase_time_in_hrs >13 and purchase_time_in_hrs <=18,'afternoon',
if(purchase_time_in_hrs>18 and purchase_time_in_hrs <=22,'evening', 'night'))))) as time_bucket from timeformat
)
select time_bucket, avg(price) as avg_spend, sum(price)/1000 as revenue_k
from timebucket group by time_bucket -- divide 1k to see the chater more clear;

在这里插入图片描述
统计每周各天的平均收益

%hive
select avg(price) as avg_price,date_format(purchase_date,'u') as weekday from transaction_details
where date_format(purchase_date,'u') is not null group by date_format(purchase_date,'u');

在这里插入图片描述
统计年度-月度的总交易量

%hive
with base as (select
transaction_id,date_format(purchase_date,'u') as weekday,purchase_month,
concat_ws('-', substr(purchase_date,1,4),
cast(ceil(month(purchase_date)/3.0) as string)) as year_quarter,substr(purchase_date,1,4)as year
from transaction_details where purchase_month is not null)
select count(distinct transaction_id) as total,weekday,purchase_month,year_quarter,year
from base group by weekday, purchase_month,year_quarter,year order by year,purchase_month

在这里插入图片描述
统计消费次数排行榜的前10位客户

%hive
with base as (
select customer_id,count(distinct transaction_id) as trans_cnt,sum(price) as spend_total 
from transaction_details where purchase_month is not null group by customer_id), 
cust_detail as(
select td.*,first_name as cust_name from
base td join vw_customer_details cd on td.customer_id=cd.customer_id)
select trans_cnt,cust_name as top10_trans_cust from cust_detail order by trans_cnt desc limit 10;

在这里插入图片描述
统计消费额排名前10的客户

%hive
with base as (
select
customer_id,
count(distinct transaction_id) as trans_cnt,
sum(price) as spend_total
from transaction_details
where purchase_month is not null
group by customer_id
),
cust_detail as (
select td.*,first_name as cust_name from
base td join vw_customer_details cd on td.customer_id =cd.customer_id
)
select spend_total,cust_name as top10_trans_cust from cust_detail order by spend_total desc limit 10;

在这里插入图片描述
统计周期内消费次数最少的客户

%hive
with base as (select customer_id,count(distinct transaction_id) as trans_cnt
from transaction_details where purchase_month is not null group by customer_id)
select * from base order by trans_cnt limit 10;

在这里插入图片描述
统计每年度-季度客户总数

%hive
with base as (select customer_id,
concat_ws('-',substr(purchase_date,1,4),
cast(ceil(month(purchase_date)/3.0) as string)) as year_quarter,substr(purchase_date,1,4) as year
from transaction_details where purchase_month is not null)
select count(distinct customer_id) as total, year_quarter, year
from base group by year_quarter,year order by year_quarter;

在这里插入图片描述
统计最大的客户平均消费额

%hive
with base as (select customer_id,avg(price) as price_avg,max(price)as price_max
from transaction_details where purchase_month is not null group by customer_id)
select max(price_avg) from base;

在这里插入图片描述
统计每月最高消费额与最常来的客户

%hive
with base as(
select customer_id,purchase_month,sum(price) as price_sum, count(transaction_id) as trans_cnt
from transaction_details where purchase_month is not null group by purchase_month,customer_id), 
rank_sum as (select
rank() over(partition by purchase_month order by price_sum desc) as rn_sum,
rank() over(partition by purchase_month order by trans_cnt desc) as rn_cnt,
purchase_month,price_sum,trans_cnt,customer_id from base)
select purchase_month,'spend' as measure_name,price_sum as measure_value,customer_id 
from rank_sum where rn_sum=1
union all
select purchase_month,'visit' as measure_name,trans_cnt as measure_value,customer_id 
from rank_sum where rn_cnt =1 order by measure_name, purchase_month;

在这里插入图片描述
基于消费额统计受欢迎程度排名前5的商品并进行验证

%hive
select product,sum(price) as price_sum from transaction_details
where purchase_month is not null group by product order by price_sum desc limit 5;

在这里插入图片描述
基于购买频次统计受欢迎程度排名前5的商品并进行验证

%hive
select product,count(transaction_id) as freq_buy from transaction_details
where purchase_month is not null group by product order by freq_buy desc limit 5;

在这里插入图片描述
基于客户数量统计受欢迎程度排名前5的商品并进行验证

%hive
select product,count(customer_id) as freq_cust from transaction_details
where purchase_month is not null group by product order by freq_cust desc limit 5;

在这里插入图片描述

门店分析

按客流量统计最受欢迎的门店

%hive
select sd.store_name,count(distinct customer_id) as unique_visit
from transaction_details td join ext_store_details sd on td.store_id=sd.store_id
group by store_name order by unique_visit desc limit 5;

在这里插入图片描述
按客户消费额统计最受欢迎的门店

%hive
select sd.store_name,sum(td.price) as total_revnue from
transaction_details td join ext_store_details sd on td.store_id=sd.store_id
group by store_name order by total_revnue desc limit 5;

在这里插入图片描述
按交易频次统计最受欢迎的门店

%hive
select sd.store_name,count(transaction_id) as unique_purchase
from transaction_details td join ext_store_details sd on td.store_id=sd.store_id
group by store_name order by unique_purchase desc limit 5;

在这里插入图片描述
按客流量统计每个门店最受欢迎的商品

%hive
with base as (select store_id,product,count(distinct customer_id) as freq_cust
from transaction_details where purchase_month is not null group by store_id, product),
prod_rank as (select store_id,product,freq_cust,
rank() over(partition by store_id order by freq_cust desc) as rn from base)
select store_name, product, freq_cust
from prod_rank td join ext_store_details sd on td.store_id =sd.store_id
where td.rn=1;

在这里插入图片描述
统计每个门店客流量与雇员的比率

%hive
with base as (select store_id,count(distinct customer_id,purchase_date)as cust_visit
from transaction_details where purchase_month is not null group by store_id)
select store_name,cust_visit,employee_number,
round(cust_visit/employee_number,2) as cust_per_employee_within_period
from base td join ext_store_details sd on td.store_id=sd.store_id;

在这里插入图片描述
按年度-季度统计每个门店的收益

%hive
select store_name,purchase_month,sum(price) as revenue
from transaction_details td join ext_store_details sd on td.store_id=sd.store_id
where purchase_month is not null group by store_name,purchase_month;

在这里插入图片描述
按门店制作总收益图

%hive
select store_name,sum(price) as revenue
from transaction_details td join ext_store_details sd on td.store_id=sd.store_id
where purchase_month is not null group by store_name;

在这里插入图片描述
统计每个门店最繁忙的时间段

%hive
with base as(
select transaction_id, purchase_time, if(purchase_time like '%PM',
concat_ws(':',string(hour(from_unixtime(unix_timestamp(purchase_time,'hh:mm')))+12),
string(minute(from_unixtime(unix_timestamp(purchase_time,'hh:mm'))))),
from_unixtime(unix_timestamp(purchase_time,'hh:mm'),'HH:mm')) as time_format,
store_id from transaction_details
where purchase_month is not null),
timeformat as (
select purchase_time,transaction_id,
(cast(split(time_format,':')[0] as decimal(4,2))+ cast(split(time_format,':')[1] as decimal(4,2))/60)
as purchase_time_in_hrs,store_id from base),
timebucket as (
select transaction_id,purchase_time, purchase_time_in_hrs,store_id,
if(purchase_time_in_hrs>5 and purchase_time_in_hrs <=8,'early morning',
if(purchase_time_in_hrs >8 and purchase_time_in_hrs <=11,'morning',
if(purchase_time_in_hrs>11 and purchase_time_in_hrs<=13,'noon',
if(purchase_time_in_hrs >13 and purchase_time_in_hrs <=18,'afternoon',
if(purchase_time_in_hrs>18 and purchase_time_in_hrs <=22,'evening', 'night'))))) as time_bucket from timeformat
)
select sd.store_name, count(transaction_id) as tran_cnt, time_bucket
from timebucket td join ext_store_details sd on td.store_id=sd.store_id
group by sd.store_name,time_bucket order by sd.store_name,tran_cnt desc;

在这里插入图片描述
根据每位员工的最大收入确定明星店

%hive
with base as (select store_name,customer_id,sum(td.price) as total_cust_purphase
from transaction_details td join ext_store_details sd on td.store_id =sd.store_id
where purchase_month is not null group by store_name, customer_id),
rk_cust as (select store_name,customer_id,total_cust_purphase,
rank() over(partition by store_name order by total_cust_purphase desc) as rn
from base)
select * from rk_cust where rn <=5;

with base as (select store_id,sum(price) as revenue from transaction_details
where purchase_month is not null group by store_id)
select store_name, revenue,employee_number,
round(revenue/employee_number,2) as revenue_per_employee_within_period
from base td join ext_store_details sd on td.store_id =sd.store_id;

在这里插入图片描述

评价分析

找出客户评价的覆盖范围

%hive
select count(td.transaction_id) as total_trans,
sum(if(sd.transaction_id is null,1, 0))as total_review_missed,
sum(if(sd.transaction_id is not null,1, 0)) as total_review_exist
from transaction_details td left join ext_store_review sd on td.transaction_id =sd.transaction_id
where purchase_month is not null;

在这里插入图片描述
根据评分了解客户与交易的数量

%hive
select review_score,count(distinct customer_id) as num_customer,count(*) as num_reviews
from transaction_details td join ext_store_review sd on td.transaction_id=sd.transaction_id
where purchase_month is not null and review_score <>'' group by review_score;

在这里插入图片描述
客户是否总是给同一家门店最佳评价

%hive
select count(*)as visit_cnt,customer_id,td.store_id
from transaction_details td join ext_store_review sd on td.transaction_id=sd.transaction_id
where purchase_month is not null and review_score='5'
group by customer_id,td.store_id order by visit_cnt desc;

在这里插入图片描述
创作不易,还请点赞支持。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/97501.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

第1章 基础知识简介

&#x1f31e;欢迎来到C语言的世界 &#x1f308;博客主页&#xff1a;卿云阁 &#x1f48c;欢迎关注&#x1f389;点赞&#x1f44d;收藏⭐️留言&#x1f4dd; &#x1f31f;本文由卿云阁原创&#xff01; &#x1f320;本阶段属于练气阶段&#xff0c;希望各位仙友顺利完成…

【机器码】原码、反码、补码的学习

目录 让我们看看这三个码是什么 原码、反码、补码各自的范围 补码的加减运算 根据自己学习做的笔记来记录一下 原码、反码、补码&#xff0c;巩固自己的学习成果。 有符号数是由机器数和真值组合而成 真值&#xff1a;数值数据的实际值&#xff0c;带有-符号 …

RL 实践(3)—— 悬崖漫步【QLearning Sarsa 各种变体】

本文介绍如何用 QLeaning 系列和 Sarsa 系列表格方法解经典的悬崖漫步 (Cliff Walking) 问题完整代码下载&#xff1a;4_[Gym Custom] Cliff Walking (Q-Learning series and Sarsa series) 文章目录1. 悬崖漫步环境 (Cliff Walking)2. 使用 TD 方法求解2.1 Sarsa2.1.1 Sarsa 原…

kali 安装AWVS [赠附件]

前言 1.AWVS简介 AWVS&#xff08;Acunetix Web Vulnerability Scanner&#xff09;是一款知名的网络漏洞扫描工具&#xff0c;通过网络爬虫测试网站安全&#xff0c;检测流行的Web应用攻击&#xff0c;如跨站脚本、sql 注入等。据统计&#xff0c;75% 的互联网攻击目标是基于…

项目中遇到的错误

项目中遇到的错误swagger2 和 swagger3swagger 文档的注解springboot 版本问题SQL 关键字异常Apifox 的使用集中版本管理swagger2 和 swagger3 swagger2和 swagger3 需要导入的依赖 <dependency><groupId>io.springfox</groupId><artifactId>springfo…

LabVIEW FPGA中可重入和非可重入子VI的区别

LabVIEW FPGA中可重入和非可重入子VI的区别 LabVIEW FPGAVI默认是可重入的。如果多次调用重入VI&#xff0c;则每个实例会占用FPGA器件的单独硬件资源。如果使用非重入VI&#xff0c;无论是并行多次调用还是仅调用一次&#xff0c;都只会创建一个硬件实例并将其用于该VI。 ​…

最常用的 9 个JavaScript 函数与示例

输出内容才能更好的理解输入的知识 前言&#x1f380; 如果你想深入图形、可视化等领域&#xff0c;那么肯定离不开 canvas、webgl、three.js 等一系列技术。在这众多技术中&#xff0c;选择canvas2d为基础来入门是一个不错的选择。 canvas在动画、可视化、图片处理等领域有着…

物联网通信技术原理 第5章

目录 5.1 移动通信的基本概念及发展历史 5.1.1 移动通信的基本概念 5.1.2 移动通信的发展历史&#xff08;理解&#xff09; 1.第一代移动通信系统(1G) 2.第二代移动通信系统(2G) 3.第三代移动通信系统(3G) 5.1.3 移动通信的发展趋势与展望 5.2 无线传播与移动信道 5.2…

哈希的应用:布隆过滤器(C++实现)

文章目录1. 布隆过滤器1.1 背景1.2 概念1.3 控制误判率2. 实现布隆过滤器2.1 布隆过滤器类2.2 Set2.3 Test2.4 删除3. 优点4. 缺陷4. 缺陷1. 布隆过滤器 1.1 背景 位图&#xff08;bitmap算法&#xff09;告诉我们&#xff0c;想判断一个元素是否存在于某个集合中&#xff0c…

c语言指针 字符 字符串

1、sizeof 某个类型或者某个变量在内存中占用字节数。 例如&#xff1a;sizeof(int) ; sizeof(i)&#xff1b;都可以使用 2、运算符& 获取变量的地址。 int i; scanf("%d",&i); 输入变量时&#xff0c;必须使用&运算符。 &操作符只能应…

机器学习100天(二):002 数据预处理之导入数据集

机器学习 100 天,今天讲的是:数据预处理之导入数据集。 首先,我们打开 spyder。新建一个 load_data.py 脚本。 第一步,导入标准库 机器学习常用的标准库有 3 个: 第一个:numpy,用于数据处理。 第二个:matplotlib.pyplot,用于画图。 第三个:pandas,用于数值分析…

python 爬虫

前言 一、什么是爬虫 爬虫&#xff1a;&#xff08;又称为网页蜘蛛&#xff0c;网络机器人&#xff0c;在 FOAF 社区中间&#xff0c;更经常地称为网页追逐者&#xff09;&#xff1b;它是一种按照一定的规则&#xff0c;自动地从互联网上抓取对于我们有价值的网络信息的程序…

最强大的布局方案——网格Grid布局万字详解

Grid 布局又称网格布局&#xff0c;是W3C提出的一个二维布局系统&#xff0c;它与 Flex 布局有一定的相似性&#xff0c;都可以指定容器内部多个项目的位置。但它们也存在重大区别。Flex 布局是轴线布局&#xff0c;只能指定"项目"针对轴线的位置&#xff0c;可以看作…

jsp+ssm计算机毕业设计大学城二手书交易网站【附源码】

项目运行 环境配置&#xff1a; Jdk1.8 Tomcat7.0 Mysql HBuilderX&#xff08;Webstorm也行&#xff09; Eclispe&#xff08;IntelliJ IDEA,Eclispe,MyEclispe,Sts都支持&#xff09;。 项目技术&#xff1a; JSPSSM mybatis Maven等等组成&#xff0c;B/S模式 Mave…

绝对神器,今天教你如何识别图片上竖排的日语文字

在文字翻译或者其他的工作中我们经常遇到竖排的日语&#xff0c;有时候我们用普通的日语识别的软件根本无法完成 这个时候我们就需要一款可以识别竖排的日语工具&#xff0c;横排的我们很容易就能找到&#xff0c;但是竖排的就无能为力了 今天我们讲下如何识别竖排日语识别&a…

ZERO-SHOT:多聚焦融合

ZERO-SHOT MULTI-FOCUS IMAGE FUSION &#xff08;零镜头多焦点图像融合&#xff09; 多聚焦图像融合 (Multi-focus image fusion (MFIF)) 是消除成像过程中产生的离焦模糊的有效方法。The difficulties in focus level estimation and the lack of real training set for su…

计算机毕业设计springboot+vue文体用品商城网站

项目介绍 在当今社会的高速发展过程中,产生的劳动力越来越大,提高人们的生活水平和质量,尤其计算机科技的进步,数据和信息以人兴化为本的目的,给人们提供优质的服务,其中网上购买商品尤其突出,使我们的购物方式发生巨大的改变。而线上购物,不仅需要在硬件上为人们提供服务网上购…

ASPICE详细介绍-3.ASPICE有多少能力等级?

目录ASPICE有多少能力等级&#xff1f;9 个过程属性过程属性评定过程能力等级模型ASPICE有多少能力等级&#xff1f; ASPICE能力等级从0级到5级共分为6个层次&#xff0c;必须满足前一级别才可晋级下一个级别的评估。 【0级】Incomplete&#xff0c;未完成。 The process is…

【YOLOv7-环境搭建】PyTorch安装后输出版本显示No module named ‘Torch’的解决方法

可能一&#xff1a;PyCharm环境导入错误 配置的解释器&#xff0c;必须为所创建的虚拟环境下的python.exe文件&#xff0c;别的路径下的python.exe文件不好使&#xff01;&#xff01; 解决方法&#xff1a;根据【YOLOv7-环境搭建③】PyCharm安装和环境、解释器配置文中配置解…

微信小程序自定义头部导航nav

1.封装自定义nav导航组件 // app.js App({globalData: {systeminfo: false, //系统信息headerBtnPosi: false //头部菜单高度} })// components/nav/nav.js const app getApp(); Component({properties: {vTitle: { // 标题type: String,value: ""},isSearch: {…