10.(Python数模)(预测模型二)LSTM回归网络(1→1)

news2024/7/4 4:31:08

LSTM回归网络(1→1)

长短期记忆网络 - 通常只称为“LSTM” - 是一种特殊的RNN,能够学习长期的规律。 它们是由Hochreiter&Schmidhuber(1997)首先提出的,并且在后来的工作中被许多人精炼和推广。他们在各种各样的问题上应用得非常好,现在被广泛的使用。

LSTM简介

有一串时间序列数据[112,118,132,129,121,135],训练的本质是用后一个步长的数据作为Y去对应当前的X。
用一个步长预测一个,监督学习数据类型1->1
X Y
112 118
118 132
132 129
129 121
121 135

问题描述

所给的数据文件是1949-1960每月的航班乘客数量
在这里插入图片描述

源代码

# LSTM for international airline passengers problem with regression framing
import numpy
import matplotlib.pyplot as plt
from pandas import read_csv
import math
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error
"""
用一个步长预测一个,监督学习数据类型1->1
X		    Y
112		118
118		132
132		129
129		121
121		135
"""
# 将数据截取成1->1的监督学习格式
def create_dataset(dataset, look_back=1):
	dataX, dataY = [], []
	for i in range(len(dataset)-look_back-1):
		a = dataset[i:(i+look_back), 0]
		dataX.append(a)
		dataY.append(dataset[i + look_back, 0])
	return numpy.array(dataX), numpy.array(dataY)
# 定义随机种子,以便重现结果
numpy.random.seed(7)
# 加载数据
dataframe = read_csv('airline-passengers.csv', usecols=[1], engine='python')
dataset = dataframe.values
dataset = dataset.astype('float32')
# 缩放数据
scaler = MinMaxScaler(feature_range=(0, 1))
dataset = scaler.fit_transform(dataset)
# 分割2/3数据作为测试
train_size = int(len(dataset) * 0.67)
test_size = len(dataset) - train_size
train, test = dataset[0:train_size,:], dataset[train_size:len(dataset),:]
# 预测数据步长为1,一个预测一个,1->1
look_back = 1
trainX, trainY = create_dataset(train, look_back)
testX, testY = create_dataset(test, look_back)
# 重构输入数据格式 [samples, time steps, features] = [93,1,1]
trainX = numpy.reshape(trainX, (trainX.shape[0], 1, trainX.shape[1]))
testX = numpy.reshape(testX, (testX.shape[0], 1, testX.shape[1]))
# 构建 LSTM 网络
model = Sequential()
model.add(LSTM(4, input_shape=(1, look_back)))
model.add(Dense(1))
model.compile(loss='mean_squared_error', optimizer='adam')
model.fit(trainX, trainY, epochs=100, batch_size=1, verbose=2)
# 对训练数据的Y进行预测
trainPredict = model.predict(trainX)
# 对测试数据的Y进行预测
testPredict = model.predict(testX)
# 对数据进行逆缩放
trainPredict = scaler.inverse_transform(trainPredict)
trainY = scaler.inverse_transform([trainY])
testPredict = scaler.inverse_transform(testPredict)
testY = scaler.inverse_transform([testY])
# 计算RMSE误差
trainScore = math.sqrt(mean_squared_error(trainY[0], trainPredict[:,0]))
print('Train Score: %.2f RMSE' % (trainScore))
testScore = math.sqrt(mean_squared_error(testY[0], testPredict[:,0]))
print('Test Score: %.2f RMSE' % (testScore))

# 构造一个和dataset格式相同的数组,共145行,dataset为总数据集,把预测的93行训练数据存进去
trainPredictPlot = numpy.empty_like(dataset)
# 用nan填充数组
trainPredictPlot[:, :] = numpy.nan
# 将训练集预测的Y添加进数组,从第3位到第93+3位,共93行
trainPredictPlot[look_back:len(trainPredict)+look_back, :] = trainPredict

# 构造一个和dataset格式相同的数组,共145行,把预测的后44行测试数据数据放进去
testPredictPlot = numpy.empty_like(dataset)
testPredictPlot[:, :] = numpy.nan
# 将测试集预测的Y添加进数组,从第94+4位到最后,共44行
testPredictPlot[len(trainPredict)+(look_back*2)+1:len(dataset)-1, :] = testPredict

# 画图
plt.plot(scaler.inverse_transform(dataset))
plt.plot(trainPredictPlot)
plt.plot(testPredictPlot)
plt.show()

代码注释

1、scaler = MinMaxScaler(feature_range=(0, 1))。这段代码的意思是使用MinMaxScaler对数据进行归一化处理,将特征值缩放到0到1的范围内。

2、dataset = scaler.fit_transform(dataset)。这是一个常见的数据预处理步骤,将数据集进行归一化(或标准化)。在这个过程中,scaler是一个用于缩放数据的对象,可以使用fit_transform方法来对数据集进行归一化处理。这个方法会计算数据集的均值和标准差,并将数据进行转换,使得数据的分布符合均值为0,标准差为1的正态分布。通过归一化可以使得数据的不同特征在相同的尺度上进行比较和分析。转换后的部分数据如下:
在这里插入图片描述

3、model = Sequential()
model.add(LSTM(4, input_shape=(1, look_back)))
model.add(Dense(1))
model.compile(loss=‘mean_squared_error’, optimizer=‘adam’)
model.fit(trainX, trainY, epochs=100, batch_size=1, verbose=2)。
这段代码是使用Keras库构建了一个简单的循环神经网络(LSTM)模型。模型使用一个LSTM层,输入形状为(1, look_back),其中look_back是用于预测的时间步数。然后,通过添加一个全连接层(Dense)来输出预测结果。模型使用均方误差作为损失函数,优化器选择Adam。训练时使用了trainX作为输入数据,trainY作为目标数据,通过100个epochs进行训练,每个batch的大小为1,并且设置verbose=2打印训练过程的日志信息。

结果

在这里插入图片描述

参考博文

LSTM模型介绍

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/971924.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

31 WEB漏洞-文件操作之文件包含漏洞全解

目录 文件包含漏洞原理检测类型利用修复 本地包含-无限制,有限制远程包含-无限制,有限制各种协议流玩法文章介绍读取文件源码用法执行php代码用法写入一句话木马用法每个脚本支持的协议玩法 演示案例某CMS程序文件包含利用-黑盒CTF-南邮大,i春…

ChatGPT 制作转化率分析漏斗图的制作

像这样的转换率漏斗图使用前端可视化技术就可以完成。 使用ChatGPT OpenAI来完成代码的编写。 我们将完整的代码给大家复制到下面: <!DOCTYPE html> <html> <head><meta charset="utf-8"><title>ECharts</title><!-- 引入…

如何在IPhone 14、14 Pro和14 Pro Max上添加屏幕锁定

当你第一次获得iPhone时&#xff0c;系统会提示你为它创建一个密码&#xff0c;这样只有你才能访问它。你应该使用一个必须输入的密码&#xff0c;以便在iPhone 14被唤醒或打开时解锁它。这将提供更高级别的保护。当你打开数据保护时&#xff0c;iPhone上的数据会被加密&#x…

恒运资本:沪指涨逾1%,金融、地产等板块走强,北向资金净买入超60亿元

4日早盘&#xff0c;两市股指盘中强势上扬&#xff0c;沪指、深成指涨超1%&#xff0c;上证50指数涨近2%&#xff1b;两市半日成交约5500亿元&#xff0c;北向资金大举流入&#xff0c;半日净买入超60亿元。 截至午间收盘&#xff0c;沪指涨1.12%报3168.38点&#xff0c;深成指…

Vue——vue3中的ref和reactive数据理解以及父子组件之间props传递的数据

ref()函数 这是一个用来接受一个内部值&#xff0c;返回一个响应式的、可更改的 ref 对象&#xff0c;此对象只有一个指向其内部值的属性 .value。 作用&#xff1a;创建一个响应式变量&#xff0c;使得某个变量在发生改变时可以同步发生在页面上。 模板语句中使用这个变量时…

解决外接显示器后Edge浏览器地址栏等变得很大的问题

解决外接显示器后Edge浏览器地址栏等变得很大的问题 edge设置里外观——触控模式&#xff0c;把触控模式关了

uni-app 之 v-on:click点击事件

uni-app 之 v-on:click点击事件 image.png <template><!-- vue2的<template>里必须要有一个盒子&#xff0c;不能有两个&#xff0c;这里的盒子就是 view--><view>--- v-on:click点击事件 ---<view v-on:click"onclick">{{title}}<…

浅谈Mysql读写分离的坑以及应对的方案 | 京东云技术团队

一、主从架构 为什么我们要进行读写分离&#xff1f;个人觉得还是业务发展到一定的规模&#xff0c;驱动技术架构的改革&#xff0c;读写分离可以减轻单台服务器的压力&#xff0c;将读请求和写请求分流到不同的服务器&#xff0c;分摊单台服务的负载&#xff0c;提高可用性&a…

华为OD机试 - 等和子数组最小和 - 深度优先搜索(Java 2022 Q4 100分)

目录 专栏导读一、题目描述二、输入描述三、输出描述四、解题思路五、Java算法源码六、效果展示1、输入2、输出 华为OD机试 2023B卷题库疯狂收录中&#xff0c;刷题点这里 专栏导读 本专栏收录于《华为OD机试&#xff08;JAVA&#xff09;真题&#xff08;A卷B卷&#xff09;》…

ApiPost7使用介绍 | HTTP Websocket

一、基本介绍 创建项目&#xff08;团队下面可以创建多个项目节点&#xff0c;每个项目可以创建多个接口&#xff09;&#xff1a; 参数描述库&#xff08;填写参数时自动填充描述&#xff09;&#xff1a; 新建环境&#xff08;前置URL、环境变量很有用&#xff09;&#x…

docker save docker export 区别

docker save用于导出镜像到文件&#xff0c;包含镜像元数据和历史信息&#xff1b;docker export用于将当前容器状态导出至文件&#xff0c;类似快照&#xff0c;所以不包含元数据及历史信息&#xff0c;体积更小&#xff0c;此外从容器快照导入时也可以重新指定标签和元数据信…

单臂路由实现VLAN间路由

单臂路由实现VLAN间路由 单臂路由 概述拓扑图PC配置LSW2 接入层交换机LSW3 接入层交换机LSW1 汇聚层交换机R1 路由器ping 测试 单臂路由 概述 单臂路由的原理是通过一台路由器&#xff0c;使 VLAN 间互通数据通过路由器进行三层转发。 如果在路由器上为每个 VLAN 分配一个单独…

uniapp实现微信小程序全局可分享功能

uniapp实现微信小程序全局【发送给朋友】、【分享到朋友圈】、【复制链接】 主要使用 Vue.js 的 全局混入 1.创建一个全局分享的js文件。示例文件路径为&#xff1a;./utils/shareWx.js &#xff0c;在该文件中定义全局分享的内容&#xff1a; export default {data() {retur…

QT建立TCP服务器

QT core gui network *************************************************** #ifndef WIDGET_H #define WIDGET_H#include <QWidget> #include <QTcpServer> //服务器头文件 #include <QTcpSocket>//客户端头文件 #include <QList>//存放客户端…

打造西南交通感知新范式,闪马智能携手首讯科技落地创新中心

9月4日&#xff0c;2023年中国国际智能产业博览会&#xff08;以下简称“智博会”&#xff09;在重庆拉开帷幕。大会期间&#xff0c;由上海闪马智能科技有限公司&#xff08;以下简称“闪马智能”&#xff09;与重庆首讯科技股份有限公司&#xff08;以下简称“首讯科技”&…

Linux命令之用户管理(详解)

Linux命令之用户管理 常用基础命令修改root密码切换用户身份改变当前目录查看命令的用法查看命令之ls 用户管理用户的创建adduser创建useradd创建两种方式的区别 用户删除用户密码重置查看当前所有用户 在介绍Linux用户管理相关的命令之前&#xff0c;我们先介绍一些Linux的一些…

vue3+ts+uniapp实现小程序端input获取焦点计算上推页面距离

vue3tsuniapp实现小程序端input获取焦点计算上推页面距离 input获取焦点计算上推页面距离 1.先说我这边的需求2.发现问题3.解决思路4.代码展示 自我记录 1.先说我这边的需求 需求 1.给键盘同级添加一个按钮例如’下一步’ or ‘确认’ 这种按钮 2.初步想法就是获取input焦点时…

Flink---1、概述、快速上手

1、Flink概述 1.1 Flink是什么 Flink的官网主页地址&#xff1a;https://flink.apache.org/ Flink的核心目标是“数据流上有状态的计算”(Stateful Computations over Data Streams)。 具体说明&#xff1a;Apache Flink是一个“框架和分布式处理引擎”&#xff0c;用于对无界…

2023年轨道交通行业研究报告

第一章 行业概况 1.1 定义和分类 在全球行业分类标准&#xff08;GICS&#xff09;的框架下&#xff0c;轨道交通行业被精准地划定为交通运输行业的一个重要子集&#xff0c;其主要职责是专注于沿着预设轨道路线进行乘客和货物运输的系统的设计、实施、维护以及管理。这个行业…

C# 采用3DES-MAC进行签名 base64解码与编码

** 3DES-MAC ** 3DES-MAC&#xff08;Triple Data Encryption Standard Message Authentication Code&#xff09;是一种消息认证码&#xff08;MAC&#xff09;算法&#xff0c;用于验证消息的完整性和真实性。3DES-MAC使用了3DES&#xff08;Triple Data Encryption Standa…