100天精通Python(可视化篇)——第99天:Pyecharts绘制多种炫酷K线图参数说明+代码实战

news2025/1/10 23:39:08

文章目录

  • 专栏导读
  • 一、K线图介绍
    • 1. 说明
    • 2. 应用场景
  • 二、配置说明
  • 三、K线图实战
    • 1. 普通k线图
    • 2. 添加辅助线
    • 3. k线图鼠标缩放
    • 4. 添加数据缩放滑块
    • 5. K线周期图表
  • 书籍推荐

专栏导读

🔥🔥本文已收录于《100天精通Python从入门到就业》:本专栏专门针对零基础和需要进阶提升的同学所准备的一套完整教学,从0到100的不断进阶深入,后续还有实战项目,轻松应对面试,专栏订阅地址:https://blog.csdn.net/yuan2019035055/category_11466020.html

  • 优点订阅限时9.9付费专栏进入千人全栈VIP答疑群,作者优先解答机会(代码指导、远程服务),群里大佬众多可以抱团取暖(大厂内推机会)
  • 专栏福利简历指导、招聘内推、每周送实体书、80G全栈学习视频、300本IT电子书:Python、Java、前端、大数据、数据库、算法、爬虫、数据分析、机器学习、面试题库等等
    在这里插入图片描述
    在这里插入图片描述

一、K线图介绍

1. 说明

K线图是一种常用的金融图表,用于展示股票、期货、外汇等金融市场的价格走势。它由四个关键价格组成,分别是开盘价(Open)、最高价(High)、最低价(Low)和收盘价(Close)。K线图通过绘制矩形或蜡烛形状的图形来表示每个交易周期(如一天、一周或一个月)的价格波动情况。

K线图的主要特点是能够直观地显示价格的波动情况和交易行为,包括价格的涨跌、高低点、趋势等。它提供了丰富的信息,可以帮助分析师和投资者进行技术分析和决策。

2. 应用场景

  1. 技术分析:K线图是技术分析的重要工具,通过观察K线图的形态和走势,可以判断市场的趋势,识别价格的支撑和阻力位,预测价格的变化趋势。
  2. 交易决策:基于K线图的技术分析,可以制定交易策略,如买入或卖出的时机、止损和止盈的设置等,帮助投资者做出更明智的决策。
  3. 风险管理:K线图可以帮助投资者识别市场的风险和机会,及时调整仓位和风险控制措施,降低投资风险。
  4. 市场监测:K线图可以用于监测市场的整体情况和行业走势,帮助投资者了解市场的热点和趋势,进行市场分析和预测。

总之,K线图是金融市场分析和决策的重要工具,广泛应用于股票、期货、外汇等金融市场,帮助投资者更好地理解市场走势和价格波动,做出明智的投资决策。

二、配置说明

在Pyecharts中,绘制K线图时可以使用以下配置类来自定义图表的样式和交互效果:

  1. Kline:K线图类,用于创建K线图对象。
  2. opts.AxisOpts:坐标轴配置类,用于设置横坐标轴和纵坐标轴的样式和属性。
  3. opts.DataZoomOpts:数据缩放配置类,用于设置数据缩放的样式和属性。
  4. opts.SplitAreaOpts:分割区域配置类,用于设置分割区域的样式和属性。
  5. opts.AreaStyleOpts:区域样式配置类,用于设置区域的填充颜色和透明度。
  6. opts.ItemStyleOpts:图表元素样式配置类,用于设置图表元素的颜色、边框颜色等属性。
  7. opts.MarkLineOpts:标线配置类,用于设置标线的样式和属性。
  8. opts.MarkLineItem:标线项类,用于设置标线的类型和数值。
  9. opts.MarkPointOpts:标点配置类,用于设置标点的样式和属性。
  10. opts.TooltipOpts:提示框配置类,用于设置提示框的样式和属性。
  11. opts.TitleOpts:标题配置类,用于设置图表的标题样式和属性。
  12. opts.InitOpts:初始化配置类,用于设置图表的初始化属性。
  13. opts.RenderOpts:渲染初始化配置类,用于设置图表的渲染初始化属性。

以上是一些常用的配置类,可以通过实例化这些类并设置相应的属性来自定义K线图的样式和交互效果。根据具体需求,可以灵活使用这些配置类来定制自己想要的K线图。

三、K线图实战

1. 普通k线图

下面我们绘制一个最简单的K线图:

from pyecharts import options as opts
from pyecharts.charts import Kline

# 准备K线图的数据
x_data = ["2023-01-01", "2023-01-02", "2023-01-03", "2023-01-04", "2023-01-05"]
y_data = [
    [100, 120, 80, 110],  # 第一天的K线数据:开盘价、最高价、最低价、收盘价
    [110, 130, 100, 120],  # 第二天的K线数据
    [120, 140, 90, 110],  # 第三天的K线数据
    [110, 130, 100, 120],  # 第四天的K线数据
    [120, 140, 90, 110],  # 第五天的K线数据
]

# 创建K线图对象
c = (
    Kline()
    .add_xaxis(xaxis_data=x_data)  # 设置x轴数据
    .add_yaxis(
        series_name="K线图",  # 设置数据系列的名称
        y_axis=y_data,  # 设置y轴数据
        itemstyle_opts=opts.ItemStyleOpts(color="#ec0000", color0="#00da3c"),  # 设置K线图的颜色
    )
    .set_global_opts(
        xaxis_opts=opts.AxisOpts(is_scale=True),  # 设置x轴选项,使其自适应
        yaxis_opts=opts.AxisOpts(is_scale=True),  # 设置y轴选项,使其自适应
        title_opts=opts.TitleOpts(title="普通K线图"),  # 设置标题选项
    )
)

# 渲染图表
c.render("kline.html")

c.render_notebook()

运行结果:
在这里插入图片描述

2. 添加辅助线

这里我们可以添加辅助线:

import random
from pyecharts import options as opts
from pyecharts.charts import Kline

# 随机数据
data = []
# 使用嵌套的循环结构生成双层随机嵌套列表
for _ in range(30):
    inner_list = []
    # 内层列表个数
    for _ in range(4):
        random_num = random.randint(2000, 2500)
        inner_list.append(random_num)
    data.append(inner_list)

# 创建K线图对象
c = (
    Kline()
    # 添加横坐标数据
    .add_xaxis(["2023/7/{}".format(i + 1) for i in range(31)])
    # 添加纵坐标数据
    .add_yaxis(
        "kline",
        data,
        # 设置标线配置项,标记最大值
        markline_opts=opts.MarkLineOpts(
            data=[opts.MarkLineItem(type_="max", value_dim="close")]
        ),
    )
    # 设置全局配置项
    .set_global_opts(
        xaxis_opts=opts.AxisOpts(is_scale=True),  # 设置横坐标��配置项,is_scale=True表示自适应刻度
        yaxis_opts=opts.AxisOpts(
            is_scale=True,  # 设置纵坐标轴配置项,is_scale=True表示自适应刻度
            splitarea_opts=opts.SplitAreaOpts(
                is_show=True,  # 设置分割区域配置项,is_show=True表示显示分割区域
                areastyle_opts=opts.AreaStyleOpts(opacity=1)  # 设置分割区域样式配置项,opacity=1表示不透明
            ),
        ),
        title_opts=opts.TitleOpts(title="K线图添加辅助线"),  # 设置标题配置项
    )
)


# 渲染为HTML文件
c.render("K线图添加辅助线.html")

# 在Jupyter Notebook中显示图表
c.render_notebook()

运行结果:
在这里插入图片描述

3. k线图鼠标缩放

当数据量很大的时候,我们可以不全部展示,可以通过鼠标缩放:

import random
from pyecharts import options as opts
from pyecharts.charts import Kline

# 随机数据
data = []
# 使用嵌套的循环结构生成双层随机嵌套列表
for _ in range(30):
    inner_list = []
    # 内层列表个数
    for _ in range(4):
        random_num = random.randint(2000, 2500)
        inner_list.append(random_num)
    data.append(inner_list)

# 创建K线图对象
c = (
    Kline()
    # 添加横坐标数据
    .add_xaxis(["2023/7/{}".format(i + 1) for i in range(31)])
    # 添加纵坐标数据
    .add_yaxis(
        "kline",
        data,
        # 设置图表元素样式
        itemstyle_opts=opts.ItemStyleOpts(
            color="#ec0000",
            color0="#00da3c",
            border_color="#8A0000",
            border_color0="#008F28",
        ),
    )
    # 设置全局配置项
    .set_global_opts(
        # 设置横坐标轴配置项,is_scale=True表示自适应刻度
        xaxis_opts=opts.AxisOpts(is_scale=True),
        # 设置纵坐标轴配置项,is_scale=True表示自适应刻度
        yaxis_opts=opts.AxisOpts(
            is_scale=True,
            # 设置分割区域配置项,is_show=True表示显示分割区域
            splitarea_opts=opts.SplitAreaOpts(
                is_show=True,
                # 设置分割区域样式配置项,opacity=1表示不透明
                areastyle_opts=opts.AreaStyleOpts(opacity=1)
            ),
        ),
        # 设置数据缩放配置项,type_="inside"表示内置缩放
        datazoom_opts=[opts.DataZoomOpts(type_="inside")],
        # 设置标题配置项,title="K线图鼠标缩放"为标题内容
        title_opts=opts.TitleOpts(title="K线图鼠标缩放"),
    )
)

# 渲染为HTML文件
c.render("K线图鼠标缩放.html")

# 在Jupyter Notebook中显示图表
c.render_notebook()

运行结果:
在这里插入图片描述

4. 添加数据缩放滑块

可以在K线图底部添加数据缩放滑块用于缩放数据:

import random
from pyecharts import options as opts
from pyecharts.charts import Kline

# 随机数据
data = []
# 使用嵌套的循环结构生成双层随机嵌套列表
for _ in range(30):
    inner_list = []
    # 内层列表个数
    for _ in range(4):
        random_num = random.randint(2000, 2500)
        inner_list.append(random_num)
    data.append(inner_list)

# 创建K线图对象
c = (
    Kline()
    # 添加横坐标数据
    .add_xaxis(["2023/7/{}".format(i + 1) for i in range(31)])
    # 添加纵坐标数据
    .add_yaxis("kline", data)
    # 设置全局配置项
    .set_global_opts(
        xaxis_opts=opts.AxisOpts(is_scale=True),  # 设置横坐标轴配置项,is_scale=True表示自适应刻度
        yaxis_opts=opts.AxisOpts(
            is_scale=True,  # 设置纵坐标轴配置项,is_scale=True表示自适应刻度
            splitarea_opts=opts.SplitAreaOpts(
                is_show=True,  # 设置分割区域配置项,is_show=True表示显示分割区域
                areastyle_opts=opts.AreaStyleOpts(opacity=1)  # 设置分割区域样式配置项,opacity=1表示不透明
            ),
        ),
        datazoom_opts=[opts.DataZoomOpts()],  # 设置数据缩放配置项位置在底部偏下
        title_opts=opts.TitleOpts(title="K线图数据缩放滑块"),  # 设置标题配置项
    )
)

# 渲染为HTML文件
c.render("K线图数据缩放滑块.html")

# 在Jupyter Notebook中显示图表
c.render_notebook()

运行结果:
在这里插入图片描述

5. K线周期图表

下面我们绘制一个K线周期图表(开源):

from typing import List, Sequence, Union
from pyecharts import options as opts
from pyecharts.commons.utils import JsCode
from pyecharts.charts import Kline, Line, Bar, Grid

# 数据
echarts_data = [
    ["2022-10-16", 18.4, 18.58, 18.33, 18.79, 67.00, 1, 0.04, 0.11, 0.09],
    ["2022-10-19", 18.56, 18.25, 18.19, 18.56, 55.00, 0, -0.00, 0.08, 0.09],
    ["2022-10-20", 18.3, 18.22, 18.05, 18.41, 37.00, 0, 0.01, 0.09, 0.09],
    ["2022-10-21", 18.18, 18.69, 18.02, 18.98, 89.00, 0, 0.03, 0.10, 0.08],
    ["2022-10-22", 18.42, 18.29, 18.22, 18.48, 43.00, 0, -0.06, 0.05, 0.08],
    ["2022-10-23", 18.26, 18.19, 18.08, 18.36, 46.00, 0, -0.10, 0.03, 0.09],
    ["2022-10-26", 18.33, 18.07, 17.98, 18.35, 65.00, 0, -0.15, 0.03, 0.10],
    ["2022-10-27", 18.08, 18.04, 17.88, 18.13, 37.00, 0, -0.19, 0.03, 0.12],
    ["2022-10-28", 17.96, 17.86, 17.82, 17.99, 35.00, 0, -0.24, 0.03, 0.15],
    ["2022-10-29", 17.85, 17.81, 17.8, 17.93, 27.00, 0, -0.24, 0.06, 0.18],
    ["2022-10-30", 17.79, 17.93, 17.78, 18.08, 43.00, 0, -0.22, 0.11, 0.22],
    ["2022-11-02", 17.78, 17.83, 17.78, 18.04, 27.00, 0, -0.20, 0.15, 0.25],
    ["2022-11-03", 17.84, 17.9, 17.84, 18.06, 34.00, 0, -0.12, 0.22, 0.28],
    ["2022-11-04", 17.97, 18.36, 17.85, 18.39, 62.00, 0, -0.00, 0.30, 0.30],
    ["2022-11-05", 18.3, 18.57, 18.18, 19.08, 177.00, 0, 0.07, 0.33, 0.30],
    ["2022-11-06", 18.53, 18.68, 18.3, 18.71, 95.00, 0, 0.12, 0.35, 0.29],
    ["2022-11-09", 18.75, 19.08, 18.75, 19.98, 202.00, 1, 0.16, 0.35, 0.27],
    ["2022-11-10", 18.85, 18.64, 18.56, 18.99, 85.00, 0, 0.09, 0.29, 0.25],
    ["2022-11-11", 18.64, 18.44, 18.31, 18.64, 50.00, 0, 0.06, 0.27, 0.23],
    ["2022-11-12", 18.55, 18.27, 18.17, 18.57, 43.00, 0, 0.05, 0.25, 0.23],
    ["2022-11-13", 18.13, 18.14, 18.09, 18.34, 35.00, 0, 0.05, 0.24, 0.22],
    ["2022-11-16", 18.01, 18.1, 17.93, 18.17, 34.00, 0, 0.07, 0.25, 0.21],
    ["2022-11-17", 18.2, 18.14, 18.08, 18.45, 58.00, 0, 0.11, 0.25, 0.20],
    ["2022-11-18", 18.23, 18.16, 18.0, 18.45, 47.00, 0, 0.13, 0.25, 0.19],
    ["2022-11-19", 18.08, 18.2, 18.05, 18.25, 32.00, 0, 0.15, 0.24, 0.17],
    ["2022-11-20", 18.15, 18.15, 18.11, 18.29, 36.00, 0, 0.13, 0.21, 0.15],
    ["2022-11-23", 18.16, 18.19, 18.12, 18.34, 47.00, 0, 0.11, 0.18, 0.13],
    ["2022-11-24", 18.23, 17.88, 17.7, 18.23, 62.00, 0, 0.03, 0.13, 0.11],
    ["2022-11-25", 17.85, 17.73, 17.56, 17.85, 66.00, 0, -0.03, 0.09, 0.11],
    ["2022-11-26", 17.79, 17.53, 17.5, 17.92, 63.00, 0, -0.10, 0.06, 0.11],
    ["2022-11-27", 17.51, 17.04, 16.9, 17.51, 67.00, 0, -0.16, 0.05, 0.13],
    ["2022-11-30", 17.07, 17.2, 16.98, 17.32, 55.00, 0, -0.12, 0.09, 0.15],
    ["2022-12-01", 17.28, 17.11, 16.91, 17.28, 39.00, 0, -0.09, 0.12, 0.16],
    ["2022-12-02", 17.13, 17.91, 17.05, 17.99, 102.00, 0, -0.01, 0.17, 0.18],
    ["2022-12-03", 17.8, 17.78, 17.61, 17.98, 71.00, 0, -0.09, 0.14, 0.18],
    ["2022-12-04", 17.6, 17.25, 17.13, 17.69, 51.00, 0, -0.18, 0.10, 0.19],
    ["2022-12-07", 17.2, 17.39, 17.15, 17.45, 43.00, 0, -0.19, 0.12, 0.22],
    ["2022-12-08", 17.3, 17.42, 17.18, 17.62, 45.00, 0, -0.23, 0.13, 0.24],
    ["2022-12-09", 17.33, 17.39, 17.32, 17.59, 44.00, 0, -0.29, 0.13, 0.28],
    ["2022-12-10", 17.39, 17.26, 17.21, 17.65, 44.00, 0, -0.37, 0.13, 0.32],
    ["2022-12-11", 17.23, 16.92, 16.66, 17.26, 114.00, 1, -0.44, 0.15, 0.37],
    ["2022-12-14", 16.75, 17.06, 16.5, 17.09, 94.00, 0, -0.44, 0.21, 0.44],
    ["2022-12-15", 17.03, 17.03, 16.9, 17.06, 46.00, 0, -0.44, 0.28, 0.50],
    ["2022-12-16", 17.08, 16.96, 16.87, 17.09, 30.00, 0, -0.40, 0.36, 0.56],
    ["2022-12-17", 17.0, 17.1, 16.95, 17.12, 50.00, 0, -0.30, 0.47, 0.62],
    ["2022-12-18", 17.09, 17.52, 17.04, 18.06, 156.00, 0, -0.14, 0.59, 0.66],
    ["2022-12-21", 17.43, 18.23, 17.35, 18.45, 152.00, 1, 0.02, 0.69, 0.68],
    ["2022-12-22", 18.14, 18.27, 18.06, 18.32, 94.00, 0, 0.08, 0.72, 0.68],
    ["2022-12-23", 18.28, 18.19, 18.17, 18.71, 108.00, 0, 0.13, 0.73, 0.67],
    ["2022-12-24", 18.18, 18.14, 18.01, 18.31, 37.00, 0, 0.19, 0.74, 0.65],
    ["2022-12-25", 18.22, 18.33, 18.2, 18.36, 48.00, 0, 0.26, 0.75, 0.62],
    ["2022-12-28", 18.35, 17.84, 17.8, 18.39, 48.00, 0, 0.27, 0.72, 0.59],
    ["2022-12-29", 17.83, 17.94, 17.71, 17.97, 36.00, 0, 0.36, 0.73, 0.55],
    ["2022-12-30", 17.9, 18.26, 17.55, 18.3, 71.00, 1, 0.43, 0.71, 0.50],
    ["2022-12-31", 18.12, 17.99, 17.91, 18.33, 72.00, 0, 0.40, 0.63, 0.43],
    ["2023-01-04", 17.91, 17.28, 17.16, 17.95, 37.00, 1, 0.34, 0.55, 0.38],
    ["2023-01-05", 17.17, 17.23, 17.0, 17.55, 51.00, 0, 0.37, 0.51, 0.33],
    ["2023-01-06", 17.2, 17.31, 17.06, 17.33, 31.00, 0, 0.37, 0.46, 0.28],
    ["2023-01-07", 17.15, 16.67, 16.51, 17.15, 19.00, 0, 0.30, 0.37, 0.22],
    ["2023-01-08", 16.8, 16.81, 16.61, 17.06, 60.00, 0, 0.29, 0.32, 0.18],
    ["2023-01-11", 16.68, 16.04, 16.0, 16.68, 65.00, 0, 0.20, 0.24, 0.14],
    ["2023-01-12", 16.03, 15.98, 15.88, 16.25, 46.00, 0, 0.20, 0.21, 0.11],
    ["2023-01-13", 16.21, 15.87, 15.78, 16.21, 57.00, 0, 0.20, 0.18, 0.08],
    ["2023-01-14", 15.55, 15.89, 15.52, 15.96, 42.00, 0, 0.20, 0.16, 0.05],
    ["2023-01-15", 15.87, 15.48, 15.45, 15.92, 34.00, 1, 0.17, 0.11, 0.02],
    ["2023-01-18", 15.39, 15.42, 15.36, 15.7, 26.00, 0, 0.21, 0.10, -0.00],
    ["2023-01-19", 15.58, 15.71, 15.35, 15.77, 38.00, 0, 0.25, 0.09, -0.03],
    ["2023-01-20", 15.56, 15.52, 15.24, 15.68, 38.00, 0, 0.23, 0.05, -0.07],
    ["2023-01-21", 15.41, 15.3, 15.28, 15.68, 35.00, 0, 0.21, 0.00, -0.10],
    ["2023-01-22", 15.48, 15.28, 15.13, 15.49, 30.00, 0, 0.21, -0.02, -0.13],
    ["2023-01-25", 15.29, 15.48, 15.2, 15.49, 21.00, 0, 0.20, -0.06, -0.16],
    ["2023-01-26", 15.33, 14.86, 14.78, 15.39, 30.00, 0, 0.12, -0.13, -0.19],
    ["2023-01-27", 14.96, 15.0, 14.84, 15.22, 51.00, 0, 0.13, -0.14, -0.20],
    ["2023-01-28", 14.96, 14.72, 14.62, 15.06, 25.00, 0, 0.10, -0.17, -0.22],
    ["2023-01-29", 14.75, 14.99, 14.62, 15.08, 36.00, 0, 0.13, -0.17, -0.24],
    ["2023-02-01", 14.98, 14.72, 14.48, 15.18, 27.00, 0, 0.10, -0.21, -0.26],
    ["2023-02-02", 14.65, 14.85, 14.65, 14.95, 18.00, 0, 0.11, -0.21, -0.27],
    ["2023-02-03", 14.72, 14.67, 14.55, 14.8, 23.00, 0, 0.10, -0.24, -0.29],
    ["2023-02-04", 14.79, 14.88, 14.69, 14.93, 22.00, 0, 0.13, -0.24, -0.30],
    ["2023-02-05", 14.9, 14.86, 14.78, 14.93, 16.00, 0, 0.12, -0.26, -0.32],
    ["2023-02-15", 14.5, 14.66, 14.47, 14.82, 19.00, 0, 0.11, -0.28, -0.34],
    ["2023-02-16", 14.77, 14.94, 14.72, 15.05, 26.00, 0, 0.14, -0.28, -0.35],
    ["2023-02-17", 14.95, 15.03, 14.88, 15.07, 38.00, 0, 0.12, -0.31, -0.37],
    ["2023-02-18", 14.95, 14.9, 14.87, 15.06, 28.00, 0, 0.07, -0.35, -0.39],
    ["2023-02-19", 14.9, 14.75, 14.68, 14.94, 22.00, 0, 0.03, -0.38, -0.40],
    ["2023-02-22", 14.88, 15.01, 14.79, 15.11, 38.00, 1, 0.01, -0.40, -0.40],
    ["2023-02-23", 15.01, 14.83, 14.72, 15.01, 24.00, 0, -0.09, -0.45, -0.40],
    ["2023-02-24", 14.75, 14.81, 14.67, 14.87, 21.00, 0, -0.17, -0.48, -0.39],
    ["2023-02-25", 14.81, 14.25, 14.21, 14.81, 51.00, 1, -0.27, -0.50, -0.37],
    ["2023-02-26", 14.35, 14.45, 14.28, 14.57, 28.00, 0, -0.26, -0.46, -0.33],
    ["2023-02-29", 14.43, 14.56, 14.04, 14.6, 48.00, 0, -0.25, -0.41, -0.29],
    ["2023-03-01", 14.56, 14.65, 14.36, 14.78, 32.00, 0, -0.21, -0.36, -0.25],
    ["2023-03-02", 14.79, 14.96, 14.72, 14.97, 60.00, 0, -0.13, -0.29, -0.22],
    ["2023-03-03", 14.95, 15.15, 14.91, 15.19, 53.00, 1, -0.05, -0.23, -0.21],
    ["2023-03-04", 15.14, 15.97, 15.02, 16.02, 164.00, 1, 0.06, -0.17, -0.20],
    ["2023-03-07", 15.9, 15.78, 15.65, 16.0, 41.00, 0, 0.04, -0.19, -0.21],
    ["2023-03-08", 15.78, 15.96, 15.21, 15.99, 45.00, 0, 0.05, -0.19, -0.21],
    ["2023-03-09", 15.73, 16.05, 15.41, 16.08, 74.00, 0, 0.03, -0.20, -0.22],
    ["2023-03-10", 15.82, 15.66, 15.65, 15.98, 19.00, 0, -0.02, -0.23, -0.22],
    ["2023-03-11", 15.59, 15.76, 15.42, 15.78, 32.00, 0, 0.01, -0.22, -0.22],
    ["2023-03-14", 15.78, 15.72, 15.65, 16.04, 31.00, 0, 0.03, -0.20, -0.22],
    ["2023-03-15", 15.81, 15.86, 15.6, 15.99, 35.00, 0, 0.10, -0.18, -0.23],
    ["2023-03-16", 15.88, 16.42, 15.79, 16.45, 123.00, 0, 0.17, -0.16, -0.24],
    ["2023-03-17", 16.39, 16.23, 16.11, 16.4, 46.00, 0, 0.14, -0.20, -0.26],
    ["2023-03-18", 16.39, 16.17, 16.04, 16.4, 59.00, 0, 0.13, -0.22, -0.28],
    ["2023-03-21", 16.21, 16.22, 16.11, 16.44, 50.00, 0, 0.12, -0.24, -0.30],
    ["2023-03-22", 16.27, 16.19, 16.16, 16.42, 33.00, 0, 0.10, -0.27, -0.32],
    ["2023-03-23", 16.26, 16.18, 16.18, 16.29, 19.00, 0, 0.08, -0.30, -0.33],
    ["2023-03-24", 16.18, 16.11, 16.01, 16.23, 23.00, 0, 0.04, -0.33, -0.35],
    ["2023-03-25", 16.12, 16.13, 16.1, 16.2, 15.00, 0, 0.00, -0.35, -0.35],
    ["2023-03-28", 16.15, 15.85, 15.81, 16.2, 22.00, 0, -0.06, -0.38, -0.35],
    ["2023-03-29", 15.9, 15.79, 15.76, 16.05, 19.00, 0, -0.06, -0.37, -0.34],
    ["2023-03-30", 15.79, 16.24, 15.78, 16.3, 29.00, 0, -0.03, -0.35, -0.33],
    ["2023-03-31", 16.3, 16.09, 16.02, 16.35, 25.00, 0, -0.07, -0.37, -0.33],
    ["2023-04-01", 16.18, 16.27, 15.98, 16.3, 38.00, 0, -0.08, -0.36, -0.32],
    ["2023-04-05", 16.13, 16.34, 16.07, 16.37, 39.00, 0, -0.13, -0.37, -0.31],
    ["2023-04-06", 16.21, 16.26, 16.19, 16.35, 30.00, 0, -0.20, -0.39, -0.29],
    ["2023-04-07", 16.32, 16.1, 16.05, 16.35, 29.00, 1, -0.26, -0.39, -0.26],
    ["2023-04-08", 16.0, 16.16, 15.98, 16.21, 22.00, 0, -0.28, -0.37, -0.23],
    ["2023-04-11", 16.16, 16.31, 16.15, 16.57, 31.00, 0, -0.30, -0.33, -0.19],
    ["2023-04-12", 16.41, 16.29, 16.12, 16.41, 17.00, 0, -0.31, -0.30, -0.14],
    ["2023-04-13", 16.39, 16.48, 16.0, 16.68, 40.00, 0, -0.30, -0.25, -0.10],
    ["2023-04-14", 16.5, 16.46, 16.37, 16.68, 22.00, 0, -0.27, -0.19, -0.06],
    ["2023-04-15", 16.56, 16.93, 16.46, 17.04, 58.00, 0, -0.20, -0.12, -0.02],
    ["2023-04-18", 16.76, 17.06, 16.72, 17.27, 50.00, 0, -0.16, -0.07, 0.01],
    ["2023-04-19", 17.21, 17.11, 17.02, 17.23, 30.00, 0, -0.12, -0.02, 0.03],
    ["2023-04-20", 17.11, 17.33, 16.8, 17.36, 78.00, 0, -0.04, 0.03, 0.05],
    ["2023-04-21", 17.27, 17.69, 17.17, 17.93, 79.00, 0, 0.05, 0.08, 0.06],
    ["2023-04-22", 17.6, 17.87, 17.56, 18.02, 55.00, 0, 0.09, 0.10, 0.05],
    ["2023-04-25", 17.75, 17.9, 17.41, 17.96, 39.00, 1, 0.11, 0.09, 0.04],
    ["2023-04-26", 17.81, 17.91, 17.6, 17.95, 39.00, 0, 0.12, 0.08, 0.02],
    ["2023-04-27", 17.9, 17.88, 17.81, 17.95, 25.00, 0, 0.12, 0.06, 0.00],
    ["2023-04-28", 17.93, 17.88, 17.67, 17.93, 28.00, 0, 0.11, 0.04, -0.01],
    ["2023-04-29", 17.87, 17.75, 17.73, 17.92, 19.00, 0, 0.08, 0.01, -0.03],
    ["2023-05-03", 17.79, 17.7, 17.56, 17.85, 35.00, 0, 0.05, -0.01, -0.04],
    ["2023-05-04", 17.7, 17.65, 17.59, 17.71, 24.00, 0, 0.02, -0.04, -0.05],
    ["2023-05-05", 17.65, 17.62, 17.46, 17.7, 20.00, 0, -0.03, -0.06, -0.05],
    ["2023-05-06", 17.62, 17.32, 17.3, 17.65, 29.00, 0, -0.10, -0.09, -0.05],
    ["2023-05-09", 17.33, 17.3, 17.21, 17.45, 23.00, 0, -0.13, -0.10, -0.03],
    ["2023-05-10", 17.11, 17.04, 16.98, 17.41, 28.00, 0, -0.15, -0.09, -0.01],
    ["2023-05-11", 17.06, 17.15, 17.06, 17.32, 20.00, 0, -0.12, -0.05, 0.01],
    ["2023-05-12", 17.02, 17.46, 17.02, 17.58, 26.00, 0, -0.07, -0.01, 0.03],
    ["2023-05-13", 17.41, 17.57, 17.34, 17.62, 23.00, 0, -0.06, 0.01, 0.03],
    ["2023-05-16", 17.55, 17.5, 17.48, 17.64, 37.00, 0, -0.06, 0.01, 0.04],
    ["2023-05-17", 17.49, 17.48, 17.39, 17.53, 13.00, 0, -0.03, 0.03, 0.05],
    ["2023-05-18", 17.41, 17.82, 17.39, 17.87, 46.00, 0, 0.01, 0.06, 0.06],
    ["2023-05-19", 17.74, 17.81, 17.67, 17.86, 17.00, 0, -0.01, 0.05, 0.05],
    ["2023-05-20", 17.76, 17.88, 17.7, 17.93, 14.00, 0, -0.03, 0.04, 0.06],
    ["2023-05-23", 17.88, 17.52, 17.48, 17.97, 16.00, 0, -0.09, 0.02, 0.06],
    ["2023-05-24", 17.51, 17.33, 17.32, 17.51, 8.00, 0, -0.09, 0.03, 0.07],
    ["2023-05-25", 17.59, 17.55, 17.44, 17.59, 10.00, 0, -0.03, 0.07, 0.08],
    ["2023-05-26", 17.5, 17.69, 17.5, 17.8, 12.00, 0, 0.00, 0.09, 0.09],
    ["2023-05-27", 17.77, 17.66, 17.62, 17.77, 7.00, 0, 0.03, 0.10, 0.09],
    ["2023-05-30", 17.75, 17.84, 17.62, 17.87, 20.00, 0, 0.08, 0.12, 0.08],
    ["2023-05-31", 17.88, 18.0, 17.81, 18.03, 41.00, 0, 0.10, 0.12, 0.07],
    ["2023-06-01", 18.09, 17.83, 17.73, 18.09, 22.00, 0, 0.08, 0.10, 0.06],
    ["2023-06-02", 17.82, 17.73, 17.66, 17.88, 10.00, 0, 0.07, 0.08, 0.05],
    ["2023-06-03", 17.8, 17.78, 17.71, 17.83, 9.00, 0, 0.08, 0.08, 0.04],
    ["2023-06-06", 17.73, 17.64, 17.56, 17.83, 12.00, 0, 0.07, 0.06, 0.03],
    ["2023-06-07", 17.76, 17.8, 17.59, 17.87, 11.00, 0, 0.08, 0.06, 0.02],
    ["2023-06-08", 17.75, 17.77, 17.65, 17.84, 9.00, 0, 0.04, 0.03, 0.01],
    ["2023-06-13", 17.58, 17.32, 17.29, 17.79, 16.00, 0, -0.02, -0.01, 0.00],
    ["2023-06-14", 17.33, 17.38, 17.29, 17.5, 10.00, 0, -0.01, 0.00, 0.00],
    ["2023-06-15", 17.25, 17.39, 17.25, 17.46, 18.00, 0, 0.00, 0.01, 0.00],
    ["2023-06-16", 17.26, 17.4, 17.26, 17.46, 22.00, 0, 0.01, 0.01, 0.00],
    ["2023-06-17", 17.38, 17.5, 17.37, 17.67, 13.00, 0, 0.03, 0.02, 0.00],
    ["2023-06-20", 17.62, 17.51, 17.42, 17.63, 15.00, 0, 0.03, 0.01, -0.00],
    ["2023-06-21", 17.53, 17.54, 17.5, 17.7, 11.00, 0, 0.02, 0.00, -0.01],
    ["2023-06-22", 17.5, 17.5, 17.46, 17.6, 10.00, 0, -0.01, -0.01, -0.01],
    ["2023-06-23", 17.52, 17.26, 17.24, 17.53, 16.00, 0, -0.04, -0.03, -0.01],
    ["2023-06-24", 17.26, 17.25, 17.18, 17.38, 60.00, 0, -0.03, -0.02, -0.00],
    ["2023-06-27", 17.25, 17.28, 17.18, 17.33, 19.00, 0, -0.01, -0.00, 0.00],
    ["2023-06-28", 17.25, 17.29, 17.21, 17.32, 13.00, 0, 0.02, 0.01, 0.00],
    ["2023-06-29", 17.31, 17.45, 17.27, 17.49, 21.00, 0, 0.07, 0.04, 0.00],
    ["2023-06-30", 17.47, 17.5, 17.39, 17.55, 17.00, 0, 0.11, 0.04, -0.01],
    ["2023-07-01", 17.5, 17.63, 17.49, 17.66, 10.00, 0, 0.14, 0.05, -0.03],
    ["2023-07-04", 17.63, 17.72, 17.63, 17.92, 17.00, 0, 0.16, 0.03, -0.05],
    ["2023-07-05", 17.79, 17.56, 17.45, 17.79, 18.00, 0, 0.14, 0.00, -0.07],
    ["2023-07-06", 17.53, 17.42, 17.31, 17.54, 20.00, 0, 0.14, -0.02, -0.09],
    ["2023-07-07", 17.41, 17.51, 17.35, 17.52, 15.00, 0, 0.16, -0.03, -0.11],
    ["2023-07-08", 17.5, 17.39, 17.35, 17.51, 15.00, 0, 0.16, -0.05, -0.13],
    ["2023-07-11", 17.49, 17.48, 17.4, 17.55, 16.00, 0, 0.17, -0.07, -0.15],
    ["2023-07-12", 17.48, 17.71, 17.46, 17.75, 25.00, 0, 0.16, -0.10, -0.18],
    ["2023-07-13", 17.13, 17.05, 17.02, 17.39, 28.00, 0, 0.07, -0.17, -0.20],
    ["2023-07-14", 17.07, 17.09, 17.0, 17.16, 12.00, 0, 0.08, -0.17, -0.21],
    ["2023-07-15", 17.08, 17.14, 17.08, 17.17, 11.00, 0, 0.09, -0.18, -0.22],
    ["2023-07-18", 17.15, 17.26, 17.13, 17.49, 24.00, 0, 0.10, -0.19, -0.23],
    ["2023-07-19", 17.26, 17.12, 17.09, 17.33, 13.00, 0, 0.07, -0.21, -0.25],
    ["2023-07-20", 17.1, 17.07, 17.02, 17.14, 11.00, 0, 0.06, -0.23, -0.26],
    ["2023-07-21", 17.07, 17.24, 17.07, 17.27, 14.00, 0, 0.07, -0.23, -0.27],
    ["2023-07-22", 17.25, 17.08, 17.03, 17.25, 10.00, 0, 0.04, -0.26, -0.28],
    ["2023-07-25", 17.09, 17.12, 17.01, 17.18, 8.00, 0, 0.04, -0.26, -0.28],
    ["2023-07-26", 17.05, 17.17, 17.05, 17.2, 11.00, 0, 0.04, -0.27, -0.29],
    ["2023-07-27", 17.2, 17.37, 16.89, 17.38, 32.00, 0, 0.02, -0.28, -0.29],
    ["2023-07-28", 17.19, 17.14, 17.09, 17.29, 19.00, 0, -0.04, -0.32, -0.30],
    ["2023-07-29", 17.15, 17.16, 17.04, 17.23, 12.00, 0, -0.08, -0.33, -0.29],
    ["2023-08-01", 17.15, 17.18, 17.1, 17.24, 19.00, 0, -0.13, -0.34, -0.28],
    ["2023-08-02", 17.21, 17.15, 17.12, 17.25, 9.00, 0, -0.19, -0.36, -0.26],
    ["2023-08-03", 17.08, 17.07, 17.01, 17.16, 9.00, 0, -0.25, -0.36, -0.24],
    ["2023-08-04", 17.11, 17.06, 16.98, 17.12, 11.00, 1, -0.29, -0.35, -0.20],
    ["2023-08-05", 17.06, 17.1, 17.05, 17.15, 16.00, 0, -0.33, -0.32, -0.16],
    ["2023-08-08", 17.14, 17.13, 17.07, 17.15, 13.00, 0, -0.35, -0.29, -0.11],
    ["2023-08-09", 17.13, 17.17, 17.1, 17.2, 25.00, 0, -0.35, -0.24, -0.06],
    ["2023-08-10", 17.17, 17.28, 17.15, 17.29, 18.00, 0, -0.31, -0.17, -0.01],
    ["2023-08-11", 17.3, 17.45, 17.26, 17.87, 31.00, 0, -0.24, -0.09, 0.03],
    ["2023-08-12", 17.51, 17.99, 17.47, 18.0, 44.00, 0, -0.14, -0.00, 0.07],
    ["2023-08-15", 18.1, 18.42, 18.02, 18.99, 81.00, 0, -0.09, 0.04, 0.09],
    ["2023-08-16", 18.64, 18.31, 18.12, 18.87, 60.00, 0, -0.10, 0.05, 0.10],
    ["2023-08-17", 18.43, 18.4, 18.31, 18.68, 21.00, 0, -0.08, 0.08, 0.11],
    ["2023-08-18", 18.33, 18.23, 18.13, 18.65, 32.00, 0, -0.07, 0.09, 0.13],
    ["2023-08-19", 18.34, 18.62, 18.31, 18.75, 39.00, 0, 0.00, 0.14, 0.14],
    ["2023-08-22", 18.62, 18.69, 18.51, 18.8, 20.00, 0, 0.01, 0.14, 0.13],
    ["2023-08-23", 18.61, 18.66, 18.52, 19.0, 28.00, 0, 0.01, 0.14, 0.13],
    ["2023-08-24", 18.66, 18.62, 18.43, 18.7, 19.00, 0, 0.00, 0.13, 0.13],
    ["2023-08-25", 18.57, 18.51, 18.19, 18.64, 19.00, 0, -0.00, 0.13, 0.13],
    ["2023-08-26", 18.49, 18.55, 18.44, 18.6, 16.00, 0, 0.01, 0.13, 0.13],
    ["2023-08-29", 18.46, 18.27, 18.03, 18.48, 20.00, 0, 0.01, 0.13, 0.13],
    ["2023-08-30", 18.24, 18.44, 18.23, 18.52, 19.00, 0, 0.07, 0.17, 0.13],
    ["2023-08-31", 18.36, 18.63, 18.36, 18.76, 15.00, 0, 0.13, 0.18, 0.12],
    ["2023-09-01", 18.6, 18.62, 18.55, 18.78, 15.00, 0, 0.16, 0.18, 0.10],
    ["2023-09-02", 18.52, 18.68, 18.48, 18.72, 17.00, 0, 0.19, 0.17, 0.08],
    ["2023-09-05", 18.68, 18.75, 18.57, 18.82, 19.00, 0, 0.20, 0.15, 0.05],
    ["2023-09-06", 18.75, 18.51, 18.43, 18.78, 17.00, 0, 0.18, 0.11, 0.02],
    ["2023-09-07", 18.51, 18.56, 18.4, 18.62, 17.00, 0, 0.17, 0.08, -0.00],
    ["2023-09-08", 18.58, 18.53, 18.48, 18.63, 8.00, 0, 0.13, 0.04, -0.03],
    ["2023-09-09", 18.52, 18.33, 18.31, 18.57, 8.00, 0, 0.06, -0.02, -0.05],
    ["2023-09-12", 18.16, 17.9, 17.81, 18.18, 28.00, 0, -0.02, -0.07, -0.06],
    ["2023-09-13", 17.91, 17.91, 17.9, 18.08, 13.00, 0, -0.05, -0.08, -0.05],
    ["2023-09-14", 17.99, 17.54, 17.48, 17.99, 22.00, 0, -0.09, -0.09, -0.05],
    ["2023-09-19", 17.55, 17.81, 17.55, 17.88, 16.00, 0, -0.06, -0.06, -0.03],
    ["2023-09-20", 17.8, 17.74, 17.67, 17.85, 10.00, 0, -0.06, -0.05, -0.02],
    ["2023-09-21", 17.75, 17.88, 17.75, 17.95, 7.00, 0, -0.03, -0.03, -0.02],
    ["2023-09-22", 17.99, 17.97, 17.88, 18.17, 12.00, 0, -0.02, -0.02, -0.01],
    ["2023-09-23", 17.99, 17.98, 17.93, 18.09, 13.00, 0, -0.01, -0.01, -0.01],
    ["2023-09-26", 17.91, 18.0, 17.85, 18.09, 14.00, 0, -0.00, -0.01, -0.01],
    ["2023-09-27", 17.97, 18.07, 17.94, 18.1, 10.00, 0, 0.00, -0.01, -0.01],
    ["2023-09-28", 18.06, 17.89, 17.83, 18.06, 10.00, 0, -0.00, -0.01, -0.01],
    ["2023-09-29", 17.96, 18.0, 17.92, 18.07, 10.00, 0, 0.03, 0.01, -0.01],
    ["2023-09-30", 17.96, 18.0, 17.95, 18.1, 8.00, 0, 0.06, 0.02, -0.01],
    ["2023-10-10", 18.03, 18.3, 18.03, 18.38, 19.00, 0, 0.11, 0.04, -0.02],
    ["2023-10-11", 18.33, 18.33, 18.26, 18.49, 12.00, 0, 0.10, 0.02, -0.04],
    ["2023-10-12", 18.28, 18.15, 18.1, 18.31, 10.00, 0, 0.07, -0.02, -0.05],
    ["2023-10-13", 18.15, 18.09, 18.05, 18.21, 10.00, 0, 0.06, -0.03, -0.06],
    ["2023-10-14", 18.1, 18.1, 18.0, 18.15, 12.00, 0, 0.04, -0.05, -0.07],
    ["2023-10-17", 18.07, 17.86, 17.83, 18.1, 12.00, 0, 0.01, -0.07, -0.08],
    ["2023-10-18", 17.86, 17.93, 17.84, 17.99, 14.00, 0, 0.03, -0.07, -0.08],
    ["2023-10-19", 17.93, 17.88, 17.83, 18.05, 11.00, 0, 0.03, -0.07, -0.08],
    ["2023-10-20", 17.9, 17.89, 17.83, 17.98, 12.00, 0, 0.05, -0.06, -0.09],
    ["2023-10-21", 17.91, 17.91, 17.82, 17.93, 12.00, 0, 0.07, -0.06, -0.09],
    ["2023-10-24", 17.93, 18.31, 17.86, 18.42, 29.00, 0, 0.11, -0.05, -0.10],
    ["2023-10-25", 18.31, 18.13, 18.09, 18.46, 19.00, 0, 0.06, -0.09, -0.12],
    ["2023-10-26", 18.12, 17.97, 17.95, 18.15, 14.00, 0, 0.02, -0.12, -0.13],
    ["2023-10-27", 18.06, 17.81, 17.77, 18.06, 21.00, 0, -0.01, -0.13, -0.13],
    ["2023-10-28", 17.8, 17.9, 17.8, 18.05, 20.00, 0, -0.01, -0.13, -0.13],
    ["2023-10-31", 17.87, 17.86, 17.72, 17.96, 12.00, 0, -0.02, -0.14, -0.13],
    ["2023-11-01", 17.87, 17.98, 17.79, 17.99, 18.00, 0, -0.03, -0.14, -0.12],
    ["2023-11-02", 17.86, 17.84, 17.76, 17.94, 30.00, 0, -0.06, -0.15, -0.12],
    ["2023-11-03", 17.83, 17.93, 17.79, 17.97, 27.00, 0, -0.07, -0.14, -0.11],
    ["2023-11-04", 17.9, 17.91, 17.87, 18.0, 26.00, 0, -0.09, -0.15, -0.10],
    ["2023-11-07", 17.91, 17.89, 17.85, 17.93, 20.00, 0, -0.11, -0.14, -0.09],
    ["2023-11-08", 17.92, 17.99, 17.89, 18.06, 26.00, 0, -0.12, -0.13, -0.07],
    ["2023-11-09", 18.0, 17.89, 17.77, 18.08, 34.00, 0, -0.15, -0.13, -0.06],
    ["2023-11-10", 17.95, 18.0, 17.94, 18.11, 27.00, 0, -0.15, -0.11, -0.03],
    ["2023-11-11", 17.95, 18.02, 17.93, 18.08, 27.00, 0, -0.17, -0.10, -0.01],
    ["2023-11-14", 18.0, 18.04, 17.95, 18.25, 35.00, 0, -0.18, -0.08, 0.01],
    ["2023-11-15", 18.1, 18.18, 18.03, 18.24, 25.00, 0, -0.18, -0.06, 0.04],
    ["2023-11-16", 18.23, 18.12, 18.05, 18.29, 23.00, 0, -0.21, -0.04, 0.06],
    ["2023-11-17", 18.11, 18.12, 18.01, 18.14, 27.00, 0, -0.21, -0.01, 0.09],
    ["2023-11-18", 18.12, 18.1, 18.03, 18.16, 18.00, 0, -0.19, 0.03, 0.12],
    ["2023-11-21", 18.08, 18.34, 18.08, 18.68, 41.00, 0, -0.13, 0.08, 0.15],
    ["2023-11-22", 18.37, 18.37, 18.28, 18.49, 52.00, 0, -0.09, 0.12, 0.17],
    ["2023-11-23", 18.4, 18.84, 18.37, 18.9, 66.00, 0, -0.02, 0.17, 0.18],
    ["2023-11-24", 18.77, 18.74, 18.61, 18.97, 26.00, 0, -0.02, 0.17, 0.18],
    ["2023-11-25", 18.8, 18.99, 18.66, 19.02, 40.00, 0, -0.01, 0.18, 0.19],
    ["2023-11-28", 19.1, 18.65, 18.52, 19.2, 85.00, 0, -0.06, 0.16, 0.19],
    ["2023-11-29", 18.65, 18.75, 18.51, 18.76, 49.00, 0, -0.06, 0.17, 0.20],
    ["2023-11-30", 18.76, 18.55, 18.47, 18.82, 39.00, 0, -0.08, 0.17, 0.21],
    ["2023-12-01", 18.55, 18.49, 18.41, 18.64, 53.00, 0, -0.06, 0.19, 0.22],
    ["2023-12-02", 18.53, 18.49, 18.24, 18.54, 48.00, 0, -0.02, 0.21, 0.23],
    ["2023-12-05", 18.39, 18.66, 18.34, 18.67, 50.00, 0, 0.03, 0.25, 0.23],
    ["2023-12-06", 18.66, 18.6, 18.57, 18.78, 31.00, 0, 0.08, 0.26, 0.23],
    ["2023-12-07", 18.65, 18.62, 18.58, 18.71, 12.00, 0, 0.15, 0.29, 0.21],
    ["2023-12-08", 18.67, 18.76, 18.62, 18.88, 26.00, 0, 0.25, 0.32, 0.19],
    ["2023-12-09", 18.76, 19.2, 18.75, 19.34, 62.00, 0, 0.34, 0.33, 0.16],
    ["2023-12-12", 19.16, 19.25, 18.9, 19.65, 79.00, 1, 0.34, 0.28, 0.11],
    ["2023-12-13", 19.09, 18.88, 18.81, 19.2, 24.00, 0, 0.27, 0.20, 0.06],
    ["2023-12-14", 18.8, 18.82, 18.8, 19.14, 32.00, 0, 0.23, 0.13, 0.02],
    ["2023-12-15", 18.73, 18.24, 18.2, 18.73, 36.00, 0, 0.13, 0.05, -0.01],
    ["2023-12-16", 18.24, 18.18, 18.12, 18.4, 24.00, 0, 0.10, 0.02, -0.03],
    ["2023-12-19", 18.15, 18.01, 17.93, 18.18, 24.00, 0, 0.06, -0.02, -0.05],
    ["2023-12-20", 17.99, 17.79, 17.7, 17.99, 29.00, 1, 0.02, -0.05, -0.05],
    ["2023-12-21", 17.83, 17.81, 17.77, 17.98, 30.00, 0, 0.00, -0.05, -0.06],
    ["2023-12-22", 17.85, 17.72, 17.65, 17.85, 21.00, 0, -0.03, -0.07, -0.06],
    ["2023-12-23", 17.77, 17.6, 17.54, 17.77, 18.00, 0, -0.04, -0.08, -0.05],
    ["2023-12-26", 17.56, 17.75, 17.39, 17.77, 16.00, 0, -0.04, -0.07, -0.05],
    ["2023-12-27", 17.73, 17.71, 17.65, 17.82, 10.00, 0, -0.06, -0.07, -0.04],
    ["2023-12-28", 17.72, 17.62, 17.49, 17.77, 26.00, 0, -0.09, -0.07, -0.03],
    ["2023-12-29", 17.6, 17.49, 17.43, 17.62, 28.00, 0, -0.09, -0.06, -0.02],
    ["2023-12-30", 17.53, 17.6, 17.47, 17.61, 22.00, 0, -0.05, -0.03, -0.01],
    ["2017-01-03", 17.6, 17.92, 17.57, 17.98, 28.00, 1, 0.00, 0.00, 0.00],
]


def split_data(origin_data) -> dict:
    datas = []
    times = []
    vols = []
    macds = []
    difs = []
    deas = []

    for i in range(len(origin_data)):
        datas.append(origin_data[i][1:])
        times.append(origin_data[i][0:1][0])
        vols.append(origin_data[i][5])
        macds.append(origin_data[i][7])
        difs.append(origin_data[i][8])
        deas.append(origin_data[i][9])
    vols = [int(v) for v in vols]

    return {
        "datas": datas,
        "times": times,
        "vols": vols,
        "macds": macds,
        "difs": difs,
        "deas": deas,
    }


def split_data_part() -> Sequence:
    mark_line_data = []
    idx = 0
    tag = 0
    vols = 0
    for i in range(len(data["times"])):
        if data["datas"][i][5] != 0 and tag == 0:
            idx = i
            vols = data["datas"][i][4]
            tag = 1
        if tag == 1:
            vols += data["datas"][i][4]
        if data["datas"][i][5] != 0 or tag == 1:
            mark_line_data.append(
                [
                    {
                        "xAxis": idx,
                        "yAxis": float("%.2f" % data["datas"][idx][3])
                        if data["datas"][idx][1] > data["datas"][idx][0]
                        else float("%.2f" % data["datas"][idx][2]),
                        "value": vols,
                    },
                    {
                        "xAxis": i,
                        "yAxis": float("%.2f" % data["datas"][i][3])
                        if data["datas"][i][1] > data["datas"][i][0]
                        else float("%.2f" % data["datas"][i][2]),
                    },
                ]
            )
            idx = i
            vols = data["datas"][i][4]
            tag = 2
        if tag == 2:
            vols += data["datas"][i][4]
        if data["datas"][i][5] != 0 and tag == 2:
            mark_line_data.append(
                [
                    {
                        "xAxis": idx,
                        "yAxis": float("%.2f" % data["datas"][idx][3])
                        if data["datas"][i][1] > data["datas"][i][0]
                        else float("%.2f" % data["datas"][i][2]),
                        "value": str(float("%.2f" % (vols / (i - idx + 1)))) + " M",
                    },
                    {
                        "xAxis": i,
                        "yAxis": float("%.2f" % data["datas"][i][3])
                        if data["datas"][i][1] > data["datas"][i][0]
                        else float("%.2f" % data["datas"][i][2]),
                    },
                ]
            )
            idx = i
            vols = data["datas"][i][4]
    return mark_line_data


def calculate_ma(day_count: int):
    result: List[Union[float, str]] = []

    for i in range(len(data["times"])):
        if i < day_count:
            result.append("-")
            continue
        sum_total = 0.0
        for j in range(day_count):
            sum_total += float(data["datas"][i - j][1])
        result.append(abs(float("%.2f" % (sum_total / day_count))))
    return result


def draw_chart():
    kline = (
        Kline()
        .add_xaxis(xaxis_data=data["times"])
        .add_yaxis(
            series_name="",
            y_axis=data["datas"],
            itemstyle_opts=opts.ItemStyleOpts(
                color="#ef232a",
                color0="#14b143",
                border_color="#ef232a",
                border_color0="#14b143",
            ),
            markpoint_opts=opts.MarkPointOpts(
                data=[
                    opts.MarkPointItem(type_="max", name="最大值"),
                    opts.MarkPointItem(type_="min", name="最小值"),
                ]
            ),
            markline_opts=opts.MarkLineOpts(
                label_opts=opts.LabelOpts(
                    position="middle", color="blue", font_size=15
                ),
                data=split_data_part(),
                symbol=["circle", "none"],
            ),
        )
        .set_series_opts(
            markarea_opts=opts.MarkAreaOpts(is_silent=True, data=split_data_part())
        )
        .set_global_opts(
            title_opts=opts.TitleOpts(title="K线周期图表", pos_left="0"),
            xaxis_opts=opts.AxisOpts(
                type_="category",
                is_scale=True,
                boundary_gap=False,
                axisline_opts=opts.AxisLineOpts(is_on_zero=False),
                splitline_opts=opts.SplitLineOpts(is_show=False),
                split_number=20,
                min_="dataMin",
                max_="dataMax",
            ),
            yaxis_opts=opts.AxisOpts(
                is_scale=True, splitline_opts=opts.SplitLineOpts(is_show=True)
            ),
            tooltip_opts=opts.TooltipOpts(trigger="axis", axis_pointer_type="line"),
            datazoom_opts=[
                opts.DataZoomOpts(
                    is_show=False, type_="inside", xaxis_index=[0, 0], range_end=100
                ),
                opts.DataZoomOpts(
                   # is_show=True, xaxis_index=[0, 1], pos_top="100%", range_end=100
                ),
                opts.DataZoomOpts(is_show=False, xaxis_index=[0, 2], range_end=100),
            ],
            # 三个图的 axis 连在一块
            # axispointer_opts=opts.AxisPointerOpts(
            #     is_show=True,
            #     link=[{"xAxisIndex": "all"}],
            #     label=opts.LabelOpts(background_color="#777"),
            # ),
        )
    )

    kline_line = (
        Line()
        .add_xaxis(xaxis_data=data["times"])
        .add_yaxis(
            series_name="MA5",
            y_axis=calculate_ma(day_count=5),
            is_smooth=True,
            linestyle_opts=opts.LineStyleOpts(opacity=0.5),
            label_opts=opts.LabelOpts(is_show=False),
        )
        .set_global_opts(
            xaxis_opts=opts.AxisOpts(
                type_="category",
                grid_index=1,
                axislabel_opts=opts.LabelOpts(is_show=False),
            ),
            yaxis_opts=opts.AxisOpts(
                grid_index=1,
                split_number=3,
                axisline_opts=opts.AxisLineOpts(is_on_zero=False),
                axistick_opts=opts.AxisTickOpts(is_show=False),
                splitline_opts=opts.SplitLineOpts(is_show=False),
                axislabel_opts=opts.LabelOpts(is_show=True),
            ),
        )
    )
    # Overlap Kline + Line
    overlap_kline_line = kline.overlap(kline_line)

    # Bar-1
    bar_1 = (
        Bar()
        .add_xaxis(xaxis_data=data["times"])
        .add_yaxis(
            series_name="Volumn",
            y_axis=data["vols"],
            xaxis_index=1,
            yaxis_index=1,
            label_opts=opts.LabelOpts(is_show=False),
            # 根据 echarts demo 的原版是这么写的
            # itemstyle_opts=opts.ItemStyleOpts(
            #     color=JsCode("""
            #     function(params) {
            #         var colorList;
            #         if (data.datas[params.dataIndex][1]>data.datas[params.dataIndex][0]) {
            #           colorList = '#ef232a';
            #         } else {
            #           colorList = '#14b143';
            #         }
            #         return colorList;
            #     }
            #     """)
            # )
            # 改进后在 grid 中 add_js_funcs 后变成如下
            itemstyle_opts=opts.ItemStyleOpts(
                color=JsCode(
                    """
                function(params) {
                    var colorList;
                    if (barData[params.dataIndex][1] > barData[params.dataIndex][0]) {
                        colorList = '#ef232a';
                    } else {
                        colorList = '#14b143';
                    }
                    return colorList;
                }
                """
                )
            ),
        )
        .set_global_opts(
            xaxis_opts=opts.AxisOpts(
                type_="category",
                grid_index=1,
                axislabel_opts=opts.LabelOpts(is_show=False),
            ),
            legend_opts=opts.LegendOpts(is_show=False),
        )
    )

    # Bar-2 (Overlap Bar + Line)
    bar_2 = (
        Bar()
        .add_xaxis(xaxis_data=data["times"])
        .add_yaxis(
            series_name="MACD",
            y_axis=data["macds"],
            xaxis_index=2,
            yaxis_index=2,
            label_opts=opts.LabelOpts(is_show=False),
            itemstyle_opts=opts.ItemStyleOpts(
                color=JsCode(
                    """
                        function(params) {
                            var colorList;
                            if (params.data >= 0) {
                              colorList = '#ef232a';
                            } else {
                              colorList = '#14b143';
                            }
                            return colorList;
                        }
                        """
                )
            ),
        )
        .set_global_opts(
            xaxis_opts=opts.AxisOpts(
                type_="category",
                grid_index=2,
                axislabel_opts=opts.LabelOpts(is_show=False),
            ),
            yaxis_opts=opts.AxisOpts(
                grid_index=2,
                split_number=4,
                axisline_opts=opts.AxisLineOpts(is_on_zero=False),
                axistick_opts=opts.AxisTickOpts(is_show=False),
                splitline_opts=opts.SplitLineOpts(is_show=False),
                axislabel_opts=opts.LabelOpts(is_show=True),
            ),
            legend_opts=opts.LegendOpts(is_show=False),
        )
    )

    line_2 = (
        Line()
        .add_xaxis(xaxis_data=data["times"])
        .add_yaxis(
            series_name="DIF",
            y_axis=data["difs"],
            xaxis_index=2,
            yaxis_index=2,
            label_opts=opts.LabelOpts(is_show=False),
        )
        .add_yaxis(
            series_name="DIF",
            y_axis=data["deas"],
            xaxis_index=2,
            yaxis_index=2,
            label_opts=opts.LabelOpts(is_show=False),
        )
        .set_global_opts(legend_opts=opts.LegendOpts(is_show=False))
    )
    # 最下面的柱状图和折线图
    overlap_bar_line = bar_2.overlap(line_2)

    # 最后的 Grid
    grid_chart = Grid()

    # 这个是为了把 data.datas 这个数据写入到 html 中,还没想到怎么跨 series 传值
    # demo 中的代码也是用全局变量传的
    grid_chart.add_js_funcs("var barData = {}".format(data["datas"]))

    # K线图和 MA5 的折线图
    grid_chart.add(
        overlap_kline_line,
        grid_opts=opts.GridOpts(pos_left="3%", pos_right="1%", height="60%"),
    )
    # Volumn 柱状图
    grid_chart.add(
        bar_1,
        grid_opts=opts.GridOpts(
            pos_left="3%", pos_right="1%", pos_top="71%", height="10%"
        ),
    )
    # MACD DIFS DEAS
    grid_chart.add(
        overlap_bar_line,
        grid_opts=opts.GridOpts(
            pos_left="3%", pos_right="1%", pos_top="82%", height="14%"
        ),
    )
    grid_chart.render("professional_kline_chart.html")


if __name__ == "__main__":
    data = split_data(origin_data=echarts_data)
    draw_chart()

运行结果:
在这里插入图片描述

书籍推荐

在这里插入图片描述

  • 购书链接京东:https://item.jd.com/14055900.html

抽奖送书老规矩(不点赞收藏中奖无效):注意记得关注博主不然中奖了还不知道!!!

  • 1. 点赞收藏文章
  • 2. 评论区留言:人生苦短,我用Python!!!(留言才能进入奖池,每人最多留言三条)
  • 3. 周六八点爬虫抽奖5人

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/969991.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

UI自动化之混合框架

什么是混合框架&#xff0c;混合框架就是将数据驱动与关键字驱动结合在一起&#xff0c;主要用来回归业务主流程&#xff0c;将核心流程串联起来。 上一篇我们写到了关键字驱动框架&#xff0c;关键字驱动框架是针对一个业务场景的单条测试用例的。 我们以163邮箱的登录到创建…

官方发布:Mac 版 Visual Studio IDE将于明年 8 月 31 日停止支持

近日&#xff0c;微软官方宣布&#xff1a;适用于 Mac 平台的 Visual Studio 集成开发环境&#xff08;IDE&#xff09;已经启动 "退休" 进程。Visual Studio for Mac 17.6 将继续支持 12 个月&#xff0c;持续到 2024 年 8 月 31 日。 微软表示在未来的 1 年内将重…

Matlab图像处理-中值滤波

中值滤波 中值滤波也是基于空间域&#xff08;邻域&#xff09;操作的&#xff0c;中值滤波是将像素邻域内灰度的中值来代替中心像素的值&#xff0c;把不同灰度的像素点看起来更接近于邻域内的像素点。 优点是可以很好的过滤掉椒盐噪声。中值滤波是非线性的图像处理方法&…

Matlab图像处理-均值滤波

均值滤波 均值滤波所使用的运算是卷积。均值滤波用邻域内像素的平均值来代替中心像素的值&#xff0c;相当于低通滤波&#xff0c;有将图像模糊化的趋势&#xff0c;对椒盐噪声基本无能为力。 在MATLAB中&#xff0c;可使用imfilter函数来实现线性空间滤波&#xff0c;该函数的…

被动操作系统指纹识别的强大功能可实现准确的物联网设备识别

到 2030 年&#xff0c;企业网络和互联网上的物联网设备数量预计将达到290 亿。这种指数级增长无意中增加了攻击面。 每个互连设备都可能为网络攻击和安全漏洞创造新的途径。Mirai 僵尸网络通过使用数千个易受攻击的 IoT 设备对关键互联网基础设施和热门网站发起大规模 DDoS 攻…

查看占用GPU资源的 进程所属docker容器,并杀死 docker 中的僵尸进程!

查看占用GPU资源的所属docker 进程&#xff0c;并杀死 docker 中的僵尸进程&#xff01; 问题描述&#xff1a;查看当前占用GPU资源的进程属于哪个Docker容器杀死 docker 中的僵尸进程 问题描述&#xff1a; 问题1&#xff1a;一台服务器&#xff0c;每个人在上面 run 一个容器…

企业主流全链路监控系统 - OpenTelemetry(二)

OpenTelemetry 二 4. 部署&#xff08;python&#xff09;准备工作&#xff08;1/5&#xff09;创建 HTTP Server&#xff08;2/5&#xff09;Automatic instrumentation&#xff08;3/5&#xff09;增加观测项&#xff08;Manual&#xff09;&#xff08;4/5&#xff09;向 Co…

win11右键菜单栏改回win10

1.右键 WIN 图标&#xff0c;点击 " 终端(管理员) ” 2.执行以下命令 reg add "HKCU\Software\Classes\CLSID\{86ca1aa0-34aa-4e8b-a509-50c905bae2a2}\InprocServer32" /f /ve3.重启电脑

【c++随笔03】构造函数、析构函数、拷贝构造函数、移动构造函数

【c随笔03】构造函数、析构函数、拷贝构造函数、移动构造函数 一、构造函数1、为何要有构造函数&#xff1f;2、构造函数定义3、无参构造、带参构造4、构造函数注意事项4.1 构造函数是特殊的&#xff0c;不是常规的成员函数&#xff0c;不能直接调d1.Date() 。4.2 如果通过无参…

R语言数据管理

1.将变量加入列表中 > mydata<-data.frame(x1c(2,3,4,5),x2c(2,5,7,9)) > mydatax1 x2 1 2 2 2 3 5 3 4 7 4 5 9 > sumx<-x1x2 Error: object x1 not found > sumx<-mydata$x1mydata$x2 > sumx [1] 4 8 11 14 > ls() [1] "mydata&…

【Java 基础篇】StringBuilder的魔力:Java字符串处理探究

在Java编程中&#xff0c;字符串是一个常见的数据类型&#xff0c;用于存储文本信息。然而&#xff0c;与字符串相关的操作可能会导致性能问题&#xff0c;因为字符串是不可变的&#xff0c;每次对字符串进行操作都会创建一个新的字符串对象。为了解决这个问题&#xff0c;Java…

RT-Thread I/O设备模型(一)

I/O设备模型 绝大部分的嵌入式系统都包括一些I/O&#xff08;Input/Output&#xff0c;输入/输出&#xff09;设备&#xff0c;例如仪器上的数据显示屏&#xff0c;工业设备上的串口通信、数据采集设备上用于保存数据的 Flash 或 SD 卡&#xff0c;以及网络设备的以太网接口等…

docker 笔记11: Docker容器监控之CAdvisor+InfluxDB+Granfana

1.原生命令 docker stats命令的结果 是什么 2.是什么 容器监控3剑客 CAdvisor监控收集InfluxDB存储数据Granfana展示图表 3.CAdvisor 4.InfluxDB 5.Granfana 6.总结 7.compose容器编排&#xff0c;一套带走 新建目录 7.1新建3件套组合的 docker-compose.yml version: 3.1vo…

如何写出一篇优秀的博客

写一篇优秀的博客需要经过以下几个步骤&#xff1a; 确定博客的主题和目的 首先要确定博客的主题和目的。这可以根据自己的专业领域、兴趣爱好或者行业热点来定。博客的主题应该具有一定的深度&#xff0c;能够吸引读者的关注&#xff0c;同时博客的目的应该明确&#xff0c;是…

基于x86_64 ubuntu22.04的framebuffer编程

文章目录 前言一、framebuffer简介二、framebuffer接口1.framebuffer设备描述信息2.framebuffer访问接口3.查询/设置可更改信息 三、使用步骤 前言 前段时间由于笔记本没有保管好&#xff0c;LCD显示屏压碎了。于是&#xff0c;将笔记本电脑拆开查看LCD型号。在淘宝上下单买了…

【Java 基础篇】玩转 Java String:技巧与实践

在Java编程中&#xff0c;字符串&#xff08;String&#xff09;是一个非常常见的数据类型&#xff0c;用于存储文本信息。无论是处理用户输入、读取文件内容还是与外部系统进行通信&#xff0c;字符串都扮演着重要的角色。本篇博客将深入讨论Java中的字符串&#xff08;String…

双边滤波 Bilateral Filtering

本文是对图像去噪领域经典的双边滤波法的一个简要介绍与总结&#xff0c;论文链接如下&#xff1a; https://users.soe.ucsc.edu/~manduchi/Papers/ICCV98.pdf 1.前言引入 对一副原始灰度图像&#xff0c;我们将它建模为一张二维矩阵u&#xff0c;每个元素称为一个像素pixel&am…

PID串行多闭环控制与并行多闭环控制的优缺点分析和应用比较

导言&#xff1a; 在自动控制领域&#xff0c;PID控制器是一种经典的控制策略&#xff0c;被广泛应用于各种工业和非工业过程。随着控制系统的复杂性增加&#xff0c;PID串行多闭环控制和PID并行多闭环控制成为解决复杂控制问题的重要方法。本文将从优点和缺点的角度对这两种控…

大数据Flink(七十二):SQL窗口的概述和Over Windows

文章目录 SQL窗口的概述和Over Windows 一、窗口的概述

【100天精通Python】Day53:Python 数据分析_NumPy数据操作和分析进阶

目录 1. 广播 2 文件输入和输出 3 随机数生成 4 线性代数操作 5 进阶操作 6 数据分析示例 1. 广播 广播是NumPy中的一种机制&#xff0c;用于在不同形状的数组之间执行元素级操作&#xff0c;使它们具有兼容的形状。广播允许你在不显式复制数据的情况下&#xff0c;对不同…