Lesson5-2:OpenCV视频操作---视频追踪

news2024/11/29 2:42:09

学习目标

  • 理解meanshift的原理
  • 知道camshift算法
  • 能够使用meanshiftCamshift进行目标追踪

1.meanshift

1.1原理

m e a n s h i f t meanshift meanshift算法的原理很简单。假设你有一堆点集,还有一个小的窗口,这个窗口可能是圆形的,现在你可能要移动这个窗口到点集密度最大的区域当中。

如下图:

在这里插入图片描述
最开始的窗口是蓝色圆环的区域,命名为 C 1 C1 C1。蓝色圆环的圆心用一个蓝色的矩形标注,命名为C1_o。

而窗口中所有点的点集构成的质心在蓝色圆形点C1_r处,显然圆环的形心和质心并不重合。所以,移动蓝色的窗口,使得形心与之前得到的质心重合。在新移动后的圆环的区域当中再次寻找圆环当中所包围点集的质心,然后再次移动,通常情况下,形心和质心是不重合的。不断执行上面的移动过程,直到形心和质心大致重合结束。 这样,最后圆形的窗口会落到像素分布最大的地方,也就是图中的绿色圈,命名为C2。

m e a n s h i f t meanshift meanshift算法除了应用在视频追踪当中,在聚类,平滑等等各种涉及到数据以及非监督学习的场合当中均有重要应用,是一个应用广泛的算法。

图像是一个矩阵信息,如何在一个视频当中使用 m e a n s h i f t meanshift meanshift算法来追踪一个运动的物体呢? 大致流程如下:

  1. 首先在图像上选定一个目标区域

  2. 计算选定区域的直方图分布,一般是HSV色彩空间的直方图。

  3. 对下一帧图像b同样计算直方图分布。

  4. 计算图像 b b b当中与选定区域直方图分布最为相似的区域,使用 m e a n s h i f t meanshift meanshift算法将选定区域沿着最为相似的部分进行移动,直到找到最相似的区域,便完成了在图像b中的目标追踪。

  5. 重复3到4的过程,就完成整个视频目标追踪。

    通常情况下我们使用直方图反向投影得到的图像和第一帧目标对象的起始位置,当目标对象的移动会反映到直方图反向投影图中,meanshift 算法就把我们的窗口移动到反向投影图像中灰度密度最大的区域了。如下图所示:
    在这里插入图片描述

直方图反向投影的流程是:

假设我们有一张100x100的输入图像,有一张10x10的模板图像,查找的过程是这样的:

  1. 从输入图像的左上角(0,0)开始,切割一块(0,0)至(10,10)的临时图像;
  2. 生成临时图像的直方图;
  3. 用临时图像的直方图和模板图像的直方图对比,对比结果记为c;
  4. 直方图对比结果c,就是结果图像(0,0)处的像素值;
  5. 切割输入图像从(0,1)至(10,11)的临时图像,对比直方图,并记录到结果图像;
  6. 重复1~5步直到输入图像的右下角,就形成了直方图的反向投影。

1.2 实现

在OpenCV中实现Meanshift的API是:

cv.meanShift(probImage, window, criteria)

参数:

  • probImage: ROI区域,即目标的直方图的反向投影

  • window: 初始搜索窗口,就是定义ROI的rect

  • criteria: 确定窗口搜索停止的准则,主要有迭代次数达到设置的最大值,窗口中心的漂移值大于某个设定的限值等。

实现Meanshift的主要流程是:

  1. 读取视频文件:cv.videoCapture()
  2. 感兴趣区域设置:获取第一帧图像,并设置目标区域,即感兴趣区域
  3. 计算直方图:计算感兴趣区域的HSV直方图,并进行归一化
  4. 目标追踪:设置窗口搜索停止条件,直方图反向投影,进行目标追踪,并在目标位置绘制矩形框。

示例:

import numpy as np
import cv2 as cv
# 1.获取图像
cap = cv.VideoCapture('DOG.wmv')

# 2.获取第一帧图像,并指定目标位置
ret,frame = cap.read()
# 2.1 目标位置(行,高,列,宽)
r,h,c,w = 197,141,0,208  
track_window = (c,r,w,h)
# 2.2 指定目标的感兴趣区域
roi = frame[r:r+h, c:c+w]

# 3. 计算直方图
# 3.1 转换色彩空间(HSV)
hsv_roi =  cv.cvtColor(roi, cv.COLOR_BGR2HSV)
# 3.2 去除低亮度的值
# mask = cv.inRange(hsv_roi, np.array((0., 60.,32.)), np.array((180.,255.,255.)))
# 3.3 计算直方图
roi_hist = cv.calcHist([hsv_roi],[0],None,[180],[0,180])
# 3.4 归一化
cv.normalize(roi_hist,roi_hist,0,255,cv.NORM_MINMAX)

# 4. 目标追踪
# 4.1 设置窗口搜索终止条件:最大迭代次数,窗口中心漂移最小值
term_crit = ( cv.TERM_CRITERIA_EPS | cv.TERM_CRITERIA_COUNT, 10, 1 )

while(True):
    # 4.2 获取每一帧图像
    ret ,frame = cap.read()
    if ret == True:
        # 4.3 计算直方图的反向投影
        hsv = cv.cvtColor(frame, cv.COLOR_BGR2HSV)
        dst = cv.calcBackProject([hsv],[0],roi_hist,[0,180],1)

        # 4.4 进行meanshift追踪
        ret, track_window = cv.meanShift(dst, track_window, term_crit)

        # 4.5 将追踪的位置绘制在视频上,并进行显示
        x,y,w,h = track_window
        img2 = cv.rectangle(frame, (x,y), (x+w,y+h), 255,2)
        cv.imshow('frame',img2)

        if cv.waitKey(60) & 0xFF == ord('q'):
            break        
    else:
        break
# 5. 资源释放        
cap.release()
cv.destroyAllWindows()

下面是三帧图像的跟踪结果:

在这里插入图片描述

2 Camshift

大家认真看下上面的结果,有一个问题,就是检测的窗口的大小是固定的,而狗狗由近及远是一个逐渐变小的过程,固定的窗口是不合适的。所以我们需要根据目标的大小和角度来对窗口的大小和角度进行修正。 C a m S h i f t CamShift CamShift可以帮我们解决这个问题。

C a m S h i f t CamShift CamShift算法全称是“Continuously Adaptive Mean-Shift”(连续自适应MeanShift算法),是对MeanShift算法的改进算法,可随着跟踪目标的大小变化实时调整搜索窗口的大小,具有较好的跟踪效果。

C a m s h i f t Camshift Camshift算法首先应用 m e a n s h i f t meanshift meanshift,一旦 m e a n s h i f t meanshift meanshift收敛,它就会更新窗口的大小,还计算最佳拟合椭圆的方向,从而根据目标的位置和大小更新搜索窗口。如下图所示:
在这里插入图片描述
Camshift在OpenCV中实现时,只需将上述的meanshift函数改为Camshift函数即可:

将Camshift中的:

 # 4.4 进行meanshift追踪
        ret, track_window = cv.meanShift(dst, track_window, term_crit)

        # 4.5 将追踪的位置绘制在视频上,并进行显示
        x,y,w,h = track_window
        img2 = cv.rectangle(frame, (x,y), (x+w,y+h), 255,2)

改为:

  #进行camshift追踪
    ret, track_window = cv.CamShift(dst, track_window, term_crit)

        # 绘制追踪结果
        pts = cv.boxPoints(ret)
        pts = np.int0(pts)
        img2 = cv.polylines(frame,[pts],True, 255,2)

3 算法总结

Meanshift和camshift算法都各有优势,自然也有劣势:

  • Meanshift算法:简单,迭代次数少,但无法解决目标的遮挡问题并且不能适应运动目标的的形状和大小变化。

  • camshift算法:可适应运动目标的大小形状的改变,具有较好的跟踪效果,但当背景色和目标颜色接近时,容易使目标的区域变大,最终有可能导致目标跟踪丢失。


总结

  1. meanshift

    原理:一个迭代的步骤,即先算出当前点的偏移均值,移动该点到其偏移均值,然后以此为新的起始点,继续移动,直到满足一定的条件结束。

    API:cv.meanshift()

    优缺点:简单,迭代次数少,但无法解决目标的遮挡问题并且不能适应运动目标的的形状和大小变化

  2. camshift

    原理:对meanshift算法的改进,首先应用meanshift,一旦meanshift收敛,它就会更新窗口的大小,还计算最佳拟合椭圆的方向,从而根据目标的位置和大小更新搜索窗口。

    API:cv.camshift()

    优缺点:可适应运动目标的大小形状的改变,具有较好的跟踪效果,但当背景色和目标颜色接近时,容易使目标的区域变大,最终有可能导致目标跟踪丢失

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/967820.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

CocosCreator3.8研究笔记(四)CocosCreator 脚本说明及使用(上)

在Cocos Creator中,脚本代码文件分为模块和插件两种方式: 模块一般就是项目的脚本,包含项目中创建的代码、引擎模块、第三方模块。 插件脚本,是指从 Cocos Creator 属性检查器中导入的插件,一般是引入第三方引入库文件…

PixelSNAIL论文代码学习(3)——自注意力机制的实现

文章目录 引言正文介绍自注意力机制的简单实现样例本文中的自注意力机制具体实现代码分析nn.nin函数的具体实现nn.causal_attention模块实现注意力模块实现代码完整实现代码使用pytorch实现因果注意力模块causal_atttention模块 问题 总结引用 引言 阅读了pixelSNAIL,很简短&a…

java八股文面试[多线程]——线程的状态

5种状态一般是针对传统的线程状态来说(操作系统层面) 6种状态:Java中给线程准备的 NEW:Thread对象被创建出来了,但是还没有执行start方法。 RUNNABLE:Thread对象调用了start方法,就为RUNNABLE状…

已解决“SyntaxError: invalid character in identifier“报错问题

本文摘要:本文已解决 Python FileNotFoundError 的相关报错问题,并总结提出了几种可用解决方案。同时结合人工智能GPT排除可能得隐患及错误。 😎 作者介绍:我是程序员洲洲,一个热爱写作的非著名程序员。CSDN全栈优质领…

Oracle数据库分页查询

方法一 方法二 方法一要比方法二效率要高很多&#xff0c;查询效率提高主要体现在WHERE ROWNUM < 40这个语句上。 这是由于CBO优化模式下&#xff0c;Oracle可以将外层的查询条件推到内层查询中&#xff0c;以提高内层查询的执行效率。方法一中&#xff0c;第二层的查询条件…

完善开发工具箱:免费开源社区版软件推荐

一、背景 工欲善其事必先利其器&#xff0c;在日常的IT工作中&#xff0c;好的工具软件是开发者日常工作中最重要的工具之一。然而&#xff0c;专业版的软件价格昂贵&#xff0c;对于小团队或个人开发者来说可能是一大负担。当然国内大家会普遍推荐使用破解版&#xff0c;小公…

Java【手撕滑动窗口】LeetCode 438. “字符串中所有异位词“, 图文详解思路分析 + 代码

文章目录 前言一、字符串中所有异位词1, 题目2, 思路分析2.1, 引入哈希表找出异位词2.2, 引入变量记录"有效字符的个数"2.3, left 右移维护窗口2.4, 总结核心步骤 3, 代码 前言 各位读者好, 我是小陈, 这是我的个人主页, 希望我的专栏能够帮助到你: &#x1f4d5; Ja…

bazel工程介绍和demo构建

参考官方示例项目&#xff1a;git clone https://github.com/bazelbuild/examples 项目结构 使用Bazel管理的项目一般包含以下几种Bazel相关的文件&#xff1a;WORKSPACE(同WORKSPACE.bazel)&#xff0c;BUILD(同BUILD.bazel)&#xff0c;.bzl 和 .bazelrc 等。 具体结构如下…

【洛谷】P3853 路标设置

原题链接&#xff1a;https://www.luogu.com.cn/problem/P3853 目录 1. 题目描述 2. 思路分析 3. 代码实现 1. 题目描述 2. 思路分析 整体思路&#xff1a;二分答案 由题意知&#xff0c;公路上相邻路标的最大距离定义为该公路的“空旷指数”。在公路上增设一些路标&…

6. series对象及DataFrame对象知识总结

【目录】 文章目录 6. series对象及DataFrame对象知识总结1. 导入pandas库2. pd.Series创建Series对象2.1 data 列表2.2 data 字典 3. s1.index获取索引4. s1.value获取值5. pd.DataFrame()-创建DataFrame 对象5.1 data 列表5.2 data 嵌套列表5.3 data 字典 6. df[列索引]…

Linux安装MySQL5.7.26教程图解

0、准备工作 下载MySQL软件包 ①、官网下载&#xff1a;https://www.cnblogs.com/linu-x/p/15701479.html#_label6 ②、百度网盘下载&#xff1a;百度网盘 请输入提取码 提取码&#xff1a;chao ③、文件说明 主机名 CentOS版本 MySQL版本 IP地址 test CentOS Linux …

AtCoder Beginner Contest 318

目录 A - Full Moon B - Overlapping sheets C - Blue Spring D - General Weighted Max Matching E - Sandwiches F - Octopus A - Full Moon #include<bits/stdc.h> using namespace std; const int N1e65; typedef long long ll ; const int maxv4e65; typedef …

nsq中diskqueue详解 - 第二篇

上一篇博客 nsq中diskqueue详解 - 第一篇_YZF_Kevin的博客-CSDN博客 中我们讲了diskqueue是什么&#xff0c;为什么需要它&#xff0c;它的整体架构流程&#xff0c;以及对外接口等等&#xff0c;如果你还没了解过&#xff0c;强烈建议先看一下&#xff0c;不然直接看这篇博客的…

AVR128单片机 USART通信控制发光二极管显示

一、系统方案 二、硬件设计 原理图如下&#xff1a; 三、单片机软件设计 1、首先是系统初始化 void port_init(void) { PORTA 0xFF; DDRA 0x00;//输入 PORTB 0xFF;//低电平 DDRB 0x00;//输入 PORTC 0xFF;//低电平 DDRC 0xFF;//输出 PORTE 0xFF; DDRE 0xfE;//输出 PO…

Leetcode Top 100 Liked Questions(序号236~347)

236. Lowest Common Ancestor of a Binary Tree 题意&#xff1a;二叉树&#xff0c;求最近公共祖先&#xff0c;All Node.val are unique. 我的思路 首先把每个节点的深度得到&#xff0c;之后不停向上&#xff0c;直到val相同&#xff0c;存深度就用map存吧 但是它没有向…

Lesson4-2:OpenCV图像特征提取与描述---Harris和Shi-Tomas算法

学习目标 理解Harris和Shi-Tomasi算法的原理能够利用Harris和Shi-Tomasi进行角点检测 1 Harris角点检测 1.1 原理 H a r r i s Harris Harris角点检测的思想是通过图像的局部的小窗口观察图像&#xff0c;角点的特征是窗口沿任意方向移动都会导致图像灰度的明显变化&#xff…

【多线程】线程间通信及状态

文章目录 1. 线程间的通信1.1 wait和notify1.2 notify随机唤醒1.3 notifyAll()1.4 join() 2. 线程间的状态3. 验证线程的状态3.1 验证NEW、RUNNABLE、TERMINATED3.2 验证WAITING3.3 验证TIMED-WAITING3.4 验证BLOCKED 4. 面试题&#xff1a;wait和sleep对比 1. 线程间的通信 1…

人工智能轨道交通行业周刊-第58期(2023.8.28-9.3)

本期关键词&#xff1a;成都智慧工厂、机务段、站台地标、备案大模型、AIGC报告 1 整理涉及公众号名单 1.1 行业类 RT轨道交通人民铁道世界轨道交通资讯网铁路信号技术交流北京铁路轨道交通网上榜铁路视点ITS World轨道交通联盟VSTR铁路与城市轨道交通RailMetro轨道世界铁路…

Redis 缓存穿透击穿和雪崩

一、说明 Redis 缓存的使用&#xff0c;极大的提升了应用程序的性能和效率&#xff0c;特别是数据查询方面。但同时&#xff0c;它也带来了一些问题。其中&#xff0c;最要害的问题&#xff0c;就是数据的一致性问题&#xff0c;从严格意义上讲&#xff0c;这个问题无解。如果对…

C# Color颜色RGB对照表

序号Color色系颜色RGB图例1Color.AliceBlue蓝色艾丽丝蓝240,248,2552Color.AntiqueWhite白色古典白色250,235,2153Color.Aqua&#xff0c;Color.Cyan青色浅蓝色&#xff0c;蓝绿色&#xff0c;青色0,255,255 C# Color颜色RGB对照表_旭东怪的博客-CSDN博客 C#颜色和名称样式对照…