基于UWB的非暴露空间位置服务探究

news2025/1/21 12:45:17

技术背景

城市轨道交通对空间位置服务有特定的痛点和需求,尤其是针对地下封闭非暴露空间开展的位置服务,如风险防控、应急指挥、维护维修、运行组织等;同时,空间位置服务是实现智慧城轨的关键技术之一,在智慧城轨交通中有着广阔的应用前景。

目前主流定位技术为GNSS(Global Navigation Satellite System, 全球导航卫星系统),以人造地球卫星为基础,在近地空间提供准确的地理位置、速度以及时间信息,应用于高精度测绘、车载导航等诸多领域。然而,GNSS在室内无法定位。

目前虽有许多成熟的室内定位技术,但均有其特定的适用场景,且其技术特征与城轨交通需求无法高度匹配。基于UWB的室内定位作为新兴的室内定位技术之一,其技术特征高度契合城轨交通需求,在后续智慧城轨的建设中拥有广泛的应用场景。本文调研了目前主流的室内定位技术,分析了其技术特征和适用场景并介绍了基于UWB的室内定位技术原理和应用案例,旨在开拓城轨交通室内定位方向的视野,以更好地开展室内定位场景的研究。

技术分析

(1)主流室内定位技术分析

基于蓝牙的定位

蓝牙室内定位基于RSSI(Received Signal Strength Indication,信号场强指示)实现,定位精度为2m ~ 10m ,适用于小范围内的定位,如在医院、养老院、展馆等场景中对人员或特定设备的定位,其精度较高,且设备体积小,是目前主流的室内定位技术。然而蓝牙定位的距离短、稳定性较差,且受噪声信号干扰大,建设成本以及网络维护的成本较高,不适用于在城市轨道交通地下封闭空间内对人和设备的定位。

基于Wi-Fi的定位

Wi-Fi定位基于RSSI实现,定位精度为3m ~ 15m ,主要用于工厂等硬件设备的资产管理,其产品成熟,价格低廉,但其易受环境干扰,尤其是城轨车地通信系统的同频干扰。Wi-Fi定位基于指纹识别算法虽然能够消除多径效应带来的误差,然而数据采集量大,因而无法在成本有限的情况下满足高精度实时跟踪、定位的功能需求。

RFID定位

RFID定位同样基于RSSI实现,定位精度为1m-5m,主要应用于对商品、货物的物流管理、生产管理和库存管理。但同Wi-Fi、RFID相比,RFID的定位距离更短,并且由于标签不具备通信能力,业务拓展性和兼容性不强。RFID只能支持是否存在于某个区域的辨识,不能做到实时跟踪。定位精度由参考标签及超高频RFID读写器的位置和密度决定,达到同样的精度要求,RFID读写器的部署相对复杂,数量较多,一定程度上限制了其在城市轨道交通行业的应用。

5G定位

基于5G的定位精度高,且有适用于不同定位场景的算法,如Multi-RTT(Multiple Round Trip Time, 多轮环回时间定位法)、UL-TDOA(Uplink Time Difference of Arrival,上行到达时间差定位法)、UL-AOA(Uplink Angle of Arrival, 上行到达角度定位法)、DL-TDOA(Downlink Time Difference of Arrival,下行到达时间差定位法)、DL-AOD(Downlink Angle of Departure, 下行离开角度定位法)、NR E-CID(New Radio Enhanced Cell ID Location,新空口增强Cell ID定位),能够在室内定位提供实时位置推送、电子围栏、地图管理、轨迹查询等服务,其具备高性能算力,且抗干扰能力强。

在定位精度方面:3GPP R16版本要求对于80%的UE,水平定位精度优于3米(室内)和10米(室外)。3GPP R17版本可达亚米级。然而5G定位受限于城市轨道交通的组网方式,由于隧道内大部分网络基于漏缆,站台等室内环境内也不适合部署大规模阵列天线,无法支持Massive MIMO, 波束赋形、波束跟踪等新技术无法发挥作用,定位精度大打折扣,另一方面,限于支持5G定位的行业终端产品产业链不足,兼容性差。

总结上述室内定位技术的特征和适用场景,如下表所示:

室内定位技术特征与适用场景

上文中提到的定位技术一般是基于RSSI实现,虽能满足室内定位的需求,但由于RSSI的固有缺陷,其应用范围有限。在RSSI中,无线电信号的强度随着空间中的距离而变化,当信号远离信号源时信号强度会衰减。然而,信号强度并不能准确的反映出室内距离。室内的障碍物会干扰信号强度,这将导致RSSI的距离测算产生误差,如下图所示。

图1 RSSI误差示意图

在图1中,A点和B点均受到墙壁的干扰,这影响了A、B两点距离的测量精度,C点处于开阔空间内,其距离测量和定位相比A、B两点会更加精确。使用指纹识别方法能够有效的消除Wi-Fi定位的误差,但是数据采集量大且随着物理布局的变化也需要更新相应数据库,工作量大且成本耗费高。

(2)基于UWB的室内定位

基于UWB的室内定位技术定位精度高、安全性高,在基站覆盖范围内均可实现精准的室内定位、追踪和导航。且其系统组成简单,只需基站和标签即可实现,高度契合城轨交通场景特征和业务需求,有着广阔的应用前景。

UWB(Ultra Wide Band, 超宽带)是一种无线载波通信技术,其频率范围在3.1 GHz ~ 10.6 GHz,最低信号带宽为500 MHz。与其他无线电技术不同,UWB不使用幅度或频率调制来编码其信号传输的信息,而是采用窄脉冲序列进行编码。使用窄脉冲序列编码使得UWB信号具有较低的功率谱密度,起到了类似扩频的效果,抗干扰能力大幅度提高,如图2所示。

图2 UWB与其他定位频谱

同时,使用窄脉冲信号编码让UWB定位能够很好的避免多径效应。这是因为窄脉冲信号时域狭窄且边缘清晰,接收端能够清晰的分离径向分量和反射分量,避免反射分量造成的误差,如图3所示。其中,左图为蓝牙、Wi-Fi及RFID等窄带信号的波形,右图为UWB信号波形;从图中可得知窄带信号为连续信号,这一类信号由于连续性导致接收端难以区分径向分量和反射分量,其在室内的定位误差较大。而UWB的窄脉冲信号在时域上狭窄,能够清晰的分离出径向分量和反射分量。

图3 窄带信号与UWB(超宽带)

UWB的定位算法根据需求不同有多种选择,常见的UWB定位算法由TWR(Two-way Ranging,双向测距方法)、TDoA(Time Difference Of Arrival,到达时间差法)和PDoA(Phase Difference of Arrival,相位到达差法)。其中,TDoA主要用于室内定位。

TDoA会在区域内部署多个实现时间紧密同步的基站,当定位标签进入区域后,会辐射发送信标信号,当基站接收到信标信号后,首先基于标记时间戳,而后多个基站的时间戳将转发至服务器,服务器根据每个基站的信标信号计算到达时间差ToF(Time of Flight, 飞行时间),并获取标签的实时位置,如图4所示。

图4 TDoA技术原理

综上所述,基于UWB的室内定位技术拥有抗多径能力强、定位精度高、兼容性强、能效高等优点,高度契合城轨交通场景特征和业务需求,有着广阔的应用前景。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/966502.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

成为前端开发负责人之前,你需要具备这10个能力

开篇 作为一名开发者,成为团队领导可能是一个令人兴奋但也令人畏惧的转变。有许多新的责任和挑战需要应对,很难确切知道会发生什么。你很可能习惯了将90-95%的时间花在成为一名专家开发者上。而成为团队领导意味着你的责任超越了在开发方面的专业知识。 …

“新KG”视点 | 陈华钧——大模型时代的知识处理:新机遇与新挑战

OpenKG 大模型专辑 导读 知识图谱和大型语言模型都是用来表示和处理知识的手段。大模型补足了理解语言的能力,知识图谱则丰富了表示知识的方式,两者的深度结合必将为人工智能提供更为全面、可靠、可控的知识处理方法。在这一背景下,OpenKG组织…

数据进制的转换

其他进制转换为十进制 通过按权展开法转换 十进制转换为其他进制 通过短除法转换(注意计算结果是倒着的) 例如将十进制的94转换为二进制 二进制转八进制和十六进制 3位二进制数表示1位八进制数,4位二进制数表示1位十六进制数 同理八进制数…

基础算法-递推算法-学习

现象: 基础算法-递推算法-学习 方法: 这就是一种递推的算法思想。递推思想的核心就是从已知条件出发,逐步推算出问题的解 最常见案例: 一:正向递推案例: 弹力球回弹问题: * 弹力球从100米高…

VB.NET 如何将某个Excel的工作表中复制到另一个的Excel中的工作表中https://bbs.csdn.net/topics/392861034

参考http://share.freesion.com/306372/可以实现直接拷贝指定表 Private Sub Excel复制工作簿()Dim myExcelApp As New Microsoft.Office.Interop.Excel.ApplicationmyExcelApp.Workbooks.Open(System.Environment.CurrentDirectory "\\测试用例.xlsx", Type.Missin…

Python教程(12)——Python数据结构集合set介绍

集合 创建集合访问集合删除集合修改集合元素添加集合元素删除集合元素 集合运算:并集(Union)交集(Intersection)差集(Difference)对称差集(Symmetric Difference) 集合的…

数学建模:Logistic回归预测

🔆 文章首发于我的个人博客:欢迎大佬们来逛逛 数学建模:Logistic回归预测 Logistic回归预测 logistic方程的定义: x t 1 c a e b t x_{t}\frac{1}{cae^{bt}}\quad xt​caebt1​ d x d t − a b e b t ( c a e b t ) 2 >…

slog正式版来了:Go日志记录新选择!

在大约一年前,我就写下了《slog:Go官方版结构化日志包[1]》一文,文中介绍了Go团队正在设计并计划在下一个Go版本中落地的Go官方结构化日志包:slog[2]。但slog并未如预期在Go 1.20版本[3]中落地,而是在golang.org/x/exp…

深入浅出理解Allan方差分析方法

一、参考资料 深入浅出理解卡尔曼滤波 二、Allan方差分析方法 1. 引言 传统的误差指标往往是采用均值误差(反映整个误差序列有无宏观偏置)、标准差(反映整个误差序列的波动情况),以及均方根(RMS&#x…

基于科大讯飞AIGC创作平台,构建数字人虚拟主播

笔者为体验目前数字人虚拟主播创作视频的质量,特意制作了一段测试视频。 基于讯飞智作创建 总体感受,数字人虚拟主播具有成本低、可定制性强等优点,但是也存在缺乏人情味、技术限制和法律问题等缺点。因此,在使用数字人虚拟主播时…

安装Ubuntu系统,将U盘当作启动盘后写保护怎么回复?

下载ChipGenius 插入写保护的U盘,打开ChipGenius.exe后可以扫描到U盘,如下图中的E:盘就是我插入的U盘(我的PC上只有C、D两个分区); ChipGenius的作用 下载ChipGenius是为了获取U盘的设备信息:重点是主控…

思维的深度,决定职场的高度

经常有读者问我,自己做事很努力,可是结果却总是不尽如人意,问题究竟出在哪里? 虽然成事的关键因素有很多,但是归根结底其实只有两点,就是做局和破局。也就是,如何识破别人给你做的局&#xff1f…

与AI一起学习Anything:30%的人用ChatGPT编程

学习和工作在LLM时代,就是同一件事,在编程这个场景,我们看到了学习和工作高度重叠的可能。 近期,随着ChatGPT热度下降,一些比较稳定的使用场景开始浮出水面,例如编程,据调查数据显示&#xff0c…

yolov5模型转换

yolov5本身release目录有提供了onnx转换好的模型,想着也自己操作一遍,可是实际操作却遇到了问题,这里做下记录方便后续可能用到 安装onnx,转的时候提示出错ONNX: export failure 0.1s: Unsupported ONNX opset version: 17 修改…

【复盘】记录一次数据库连接超时问题

问题 在下午4点左右,发现系统响应不正常。没有将结果返回给上游系统。 问题排查 1.先查看了机器的CPU、内存是否正常。发现没有问题。 2.接着看系统Error日志,发现大量的数据库连接不成功。进而分析是不是可能和请求量增加有关系。发现果然是。将近…

【React】React学习:从初级到高级(三)

3 状态管理 随着应用不断变大,应该更有意识的去关注应用状态如何组织,以及数据如何在组件之间流动。冗余或重复的状态往往是缺陷的根源。 3.1 用State响应输入 3.1.1 声明式地考虑UI 总体步骤如下: 定位组件中不同的视图状态 确定是什么…

C语言---关键词

C语言关键词如下:

centos7快速修改密码

centos7快速修改密码 小白教程,一看就会,一做就成。 1.命令 #第一种,我经常用这个,这个不行了,会用到第二个echo 用户名:密码 | sudo chpasswd #例如下面 echo root:yegoo123 | chpasswd#第二种echo 密码|passwd --st…

Redis之主从复制解读

目录 基本概述 作用 如何配置主从复制 命令配置(Slaveof ) 配置文件配置 主从复制缺点 主从复制原理 主从复制常见问题解答 命令补充(info replication) 基本概述 主从复制,是指将一台Redis服务器的数据,复制到其他的R…

MySQL分页查询详解:优化大数据集的LIMIT和OFFSET

最近在工作中,我们遇到了一个需求,甲方要求直接从数据库导出一个业务模块中所有使用中的工单信息。为了实现这一目标,我编写了一条SQL查询语句,并请求DBA协助导出数据。尽管工单数量并不多,只有3000多条,但…