MLC-LLM 部署RWKV World系列模型实战(3B模型Mac M2解码可达26tokens/s)

news2025/1/9 1:40:57

0x0. 前言

我的 ChatRWKV 学习笔记和使用指南 这篇文章是学习RWKV的第一步,然后学习了一下之后决定自己应该做一些什么。所以就在RWKV社区看到了这个将RWKV World系列模型通过MLC-LLM部署在各种硬件平台的需求,然后我就开始了解MLC-LLM的编译部署流程和RWKV World模型相比于MLC-LLM已经支持的Raven系列模型的特殊之处。

MLC-LLM的编译部署流程在MLC-LLM的官方文档已经比较详细了,但这部分有一些隐藏的坑点需要你去发现,比如现在要支持的RWKV-World模型它的Tokenizer是自定义的,并不是Huggingface的格式,这就导致我们不能使用MLC-LLM去直接编译这个模型,也不能使用预编译好的MLC-LLM二进制库去运行这个模型了。另外,在编译MLC-LLM仓库之前我们需要先编译Relax仓库而不是原始的TVM仓库,Relax可以认为是TVM的一个fork,在此基础上支持了Relax这个新一代的IR,这部分背景建议读者看一下我这个仓库的相关链接:

https://github.com/BBuf/tvm_mlir_learn

这个仓库已经揽下1.4k star,谢谢读者们支持。

从RWKV社区了解到,RWKV-World系列模型相比于Raven系列,推理代码和模型都是完全一样,不一样的地方主要是tokenizer是自定义的,并且system prompt不同。

在编译Relax的时候需要按需选择自己的编译平台进行编译,编译完之后 MLC-LLM 会通过 TVM_HOME 这个环境变量来感知 Relax 的位置,并且Relax编译时开启的选项要和MLC-LLM编译的选项匹配上,这样才可以在指定平台上进行正确的编译和推理。

在适配 RWKV-World 1.5B时,由于模型比较小对逗号比较敏感,导致第一层就炸了精度,最终挂在sampler里面,这个地方我定位2个晚上,后来mlc-ai官方的冯思远告诉我在 MLC-LLM 里如何逐层打印精度之后,我最终定位到了问题。并且在 RWKV 社区里面了解到了这个现象之前就出现过,那就是1.5B的模型第一层需要用FP32来计算,不然会炸精度,我后续实验了RWKV-4-World 3B/7B,这个现象就没有了。

另外,模型的组织格式也是值得注意的一点,并不是在任意位置编译好模型都可以在运行时被 MLC-LLM 正确发现。我大概花了快一周工作外时间在 MLC-LLM 上来支持 RWKV-World 系列模型,工作内容主要为:

  • 将大缺弦的 https://github.com/daquexian/faster-rwkv 仓库中的 RWKV World模型tokenizer实现挂到 mlc-ai 的 tokenizers.cpp 中,作为一个 3rd 库提供给MLC-LLM。合并的PR为:https://github.com/mlc-ai/tokenizers-cpp/pull/14。
  • 在上面的基础上,在MLC-LLM中支持 RWKV World系列模型的部署,对齐 World 系列模型的 Prompt ,获得良好的对话效果。分别在 Apple M2和A800显卡上进行了部署和测试。PR为:https://github.com/mlc-ai/mlc-llm/pull/848 ,这个pr还wip,如果你现在要使用的话可以直接切到这个pr对应的分支就可以了。
  • debug到1.5B RWKV World小模型会炸精度的bug,相当于踩了个大坑。

我要特别感谢 mlc-ai 官方的冯思远在我部署过程中提供的支持以及帮我Review让代码合并到 mlc-ai 社区,以及感谢大缺弦的 RWKV World Tokenizer c++实现以及在编译第三方库时帮我解决的一个bug。

以下是MLC-LLM 部署RWKV World系列模型教程,尽量提供大家部署最不踩坑的实践。

效果:

在这里插入图片描述

0x1. 将RWKV-4-World-7B部署在A800上

准备工作

  • RWKV-4-World模型地址:https://huggingface.co/StarRing2022/RWKV-4-World-7B
  • 下载这里:https://github.com/BBuf/rwkv-world-tokenizer/releases/tag/v1.0.0 的 tokenizer_model.zip并解压为tokenizer_model文件,这是RWKV World系列模型的Tokenizer文件。
  • 克隆好 https://github.com/mlc-ai/mlc-llm 和 https://github.com/mlc-ai/relax ,注意克隆的时候一定要加上 –recursive 参数,这样才会把它们依赖的第三方库也添加上。

编译Relax

git clone --recursive git@github.com:mlc-ai/relax.git
cd relax
mkdir build
cd build
cp ../cmake/config.cmake ./

然后修改build目录下的config.cmake文件,由于我这里是在A800上面编译,我改了以下设置:

set(USE_CUDA ON)
set(USE_CUTLASS ON)
set(USE_CUBLAS ON)

即启用了CUDA,并开启了2个加速库CUTLASS和CUBLAS。然后在build目录下执行cmake .. && make -j32 即可。

最后可以考虑把Relax添加到PYTHONPATH环境变量里面使得全局可见,在~/.bashrc上输入以下内容:

export TVM_HOME=/bbuf/relax
export PYTHONPATH=$TVM_HOME/python:${PYTHONPATH}

然后source ~/.bashrc即可。

编译和安装MLC-LLM

git clone --recursive git@github.com:mlc-ai/mlc-llm.git
cd mlc-llm/cmake
python3 gen_cmake_config.py

执行python3 gen_cmake_config.py 可以按需选择需要打开的编译选项,比如我这里就选择打开CUDA,CUBLAS,CUTLASS,另外需要注意的是这里的 TVM_HOME 路径需要设置为上面编译的Relax路径。

然后执行下面的操作编译:

cd ..
mkdir build
cp cmake/config.cmake build
cd build
cmake ..
make -j32

这里编译时还需要安装一下rust,按照建议的命令安装即可,编译完成之后即安装上了mlc-llm提供的聊天程序mlc_chat_cli。然后为了做模型转换和量化,我们还需要在mlc-llm目录下执行一下pip install .安装mlc_llm包。

模型转换

模型转换这里基本就是参考这个教程了:https://mlc.ai/mlc-llm/docs/compilation/compile_models.html 。

例如我们执行python3 -m mlc_llm.build --hf-path StarRing2022/RWKV-4-World-7B --target cuda --quantization q4f16_1 就可以将RWKV-4-World-7B模型权重量化为4个bit,然后activation还是以FP16的方式存储。

在这里插入图片描述
target 则指定我们要在什么平台上去运行,这里会将整个模型构成的图编译成一个动态链接库(也就是TVM的IRModule)供后续的mlc_chat_cli程序(这个是在编译mlc-llm时产生的)调用。

这里默认会在当前目录下新建一个dist/models文件夹来存量化后模型和配置文件以及链接库,转换和量化好之后的模型会存储在当前命令所在目录的dist子目录下(会自动创建),你也可以手动克隆huggingface模型到dist/models文件夹下。量化完之后的模型结构如下:

在这里插入图片描述在这里插入图片描述
这里的mlc-chat-config.json指定来模型生成的一些超参数比如top_p,temperature等。

最后在推理之前,我们还需要把最开始准备的tokenizer_model文件拷贝到这个params文件夹中。

执行推理

我们在mlc-llm的上一层文件夹执行下面的命令:

./mlc-llm/build/mlc_chat_cli --model RWKV-4-World-7B-q0f16

RWKV-4-World-7B-q0f16可以换成你量化模型时的名字,加载完并运行system prompt之后你就可以愉快的和RWKV-4-World模型聊天了。

在这里插入图片描述
程序有一些特殊的指令来退出,查看速度等等:在这里插入图片描述

性能测试

硬件量化方法速度
A800q0f16prefill: 362.7 tok/s, decode: 72.4 tok/s
A800q4f16_1prefill: 1104.7 tok/s, decode: 122.6 tok/s

这里给2组性能数据,大家感兴趣的话可以测测其它配置。

逐层debug方法

在适配1.5B模型时出现了推理结果nan的现象,可以用mlc-llm/tests/debug/dump_intermediate.py这个文件来对齐输入和tokenizer的结果之后进行debug,可以精准模拟模型推理并打印每一层的中间值,这样我们就可以方便的看到模型是在哪一层出现了nan。

0x2. 将RWKV-4-World-3B部署在Apple M2上

在mac上部署和cuda上部署并没有太大区别,主要是编译relax和mlc-llm的时候编译选项现在要选Metal而不是cuda了。我建议最好是在一个anconda环境里面处理编译的问题,不要用系统自带的python环境。

在编译relax的时候需要同时打开使用Metal和LLVM选项,如果系统没有LLVM可以先用Homebrew装一下。

在mlc-llm中生成config.cmake时使用下面的选项:

在这里插入图片描述编译完并pip install .之后使用下面的命令量化模型:

python3 -m mlc_llm.build --hf-path StarRing2022/RWKV-4-World-3B --target metal --quantization q4f16_1

量化过程中日志如下:

(base) bbuf@MacBook-Pro RWKV % python3 -m mlc_llm.build --hf-path StarRing2022/RWKV-4-World-3B --target metal --quantization q4f16_1
Weights exist at dist/models/RWKV-4-World-3B, skipping download.
Using path "dist/models/RWKV-4-World-3B" for model "RWKV-4-World-3B"
[09:53:08] /Users/bbuf/工作目录/RWKV/relax/src/runtime/metal/metal_device_api.mm:167: Intializing Metal device 0, name=Apple M2
Host CPU dection:
  Target triple: arm64-apple-darwin22.3.0
  Process triple: arm64-apple-darwin22.3.0
  Host CPU: apple-m1
Target configured: metal -keys=metal,gpu -max_function_args=31 -max_num_threads=256 -max_shared_memory_per_block=32768 -max_threads_per_block=1024 -thread_warp_size=32
Host CPU dection:
  Target triple: arm64-apple-darwin22.3.0
  Process triple: arm64-apple-darwin22.3.0
  Host CPU: apple-m1
Automatically using target for weight quantization: metal -keys=metal,gpu -max_function_args=31 -max_num_threads=256 -max_shared_memory_per_block=32768 -max_threads_per_block=1024 -thread_warp_size=32
Start computing and quantizing weights... This may take a while.
Finish computing and quantizing weights.
Total param size: 1.6060066223144531 GB
Start storing to cache dist/RWKV-4-World-3B-q4f16_1/params
[0808/0808] saving param_807
All finished, 51 total shards committed, record saved to dist/RWKV-4-World-3B-q4f16_1/params/ndarray-cache.json
Finish exporting chat config to dist/RWKV-4-World-3B-q4f16_1/params/mlc-chat-config.json
[09:53:40] /Users/bbuf/工作目录/RWKV/relax/include/tvm/topi/transform.h:1076: Warning: Fast mode segfaults when there are out-of-bounds indices. Make sure input indices are in bound
[09:53:41] /Users/bbuf/工作目录/RWKV/relax/include/tvm/topi/transform.h:1076: Warning: Fast mode segfaults when there are out-of-bounds indices. Make sure input indices are in bound
Save a cached module to dist/RWKV-4-World-3B-q4f16_1/mod_cache_before_build.pkl.
Finish exporting to dist/RWKV-4-World-3B-q4f16_1/RWKV-4-World-3B-q4f16_1-metal.so

同样也需要把tokenizer_model文件拷贝到量化后模型文件夹的params目录下,然后执行下面的命令启动聊天程序:

./mlc-llm/build/mlc_chat_cli --model RWKV-4-World-3B-q0f16

在这里插入图片描述
最后也来一个Mac M2的速度测试:

硬件量化方法速度
Apple M2q0f16204.9 tok/s, decode: 12.1 tok/s
Apple M2q4f16_1prefill: 201.6 tok/s, decode: 26.3 tok/s

建议使用q4f16的配置,这样回复会快一些。

0x3. 总结

这篇文章介绍了一下笔者最近给mlc-llm做适配的工作,欢迎大家体验MLC-LLM和RWKV-World模型。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/963691.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

分公司电脑访问总部服务器突然不通了走的是SSL隧道,如何排查处理?

环境: 1.总部:AF做为PN AF-2000-FH2130B-SC v8.0.4 2.分部:SSL设备做对接为PN SSL VPN V7.0 单臂架设 出口AF v8.0.75 核心交换机 RUIYI NBS5710-24GT4SFP-E 问题描述: 1.分部下面pc其中一个网段(192.168.8.0)ping总部服务器(172.16.10.10)不通,长ping 98%丢包,…

Java- 虚拟机学习总结

Java文件编译,加载过程 写好java文件,jdk会通过javac编译class文件,classLaoder通过classpath将字节码文件加载进入jre jvm数据区 包含栈,堆,程序计数器,方法区,本地方法栈 JAVA里的常量&…

‘XXX‘ module: ‘XXX‘ facet resources问题解决(已解决)

问题描述:XXX module: XXX facet resources 在创建web工程的时候,出现说模块没有创建,但是我们返回我们的模块,web模块是添加好的。 通过多次实验,解决问题:就是web框架它的名称不能是一样的,必…

用迅为i.MX6ULL开发板同一个网段概念

使用 nfs 之前,开发板、虚拟机 ubuntu、windows 电脑三者要互相 ping 通,这就涉及到了同一个网段 的概念。 概念:同一个网段是指 IP 地址和子网掩码相与得到的相同的网络地址。 快速判断同一个网段: (1&#xff09…

一个面向MCU的小型前后台系统

JxOS简介 JxOS面向MCU的小型前后台系统,提供消息、事件等服务,以及软件定时器,低功耗管理,按键,led等常用功能模块。 gitee仓库地址为(复制到浏览器打开): https://gitee.com/jer…

访问 GitHub 方法

访问 GitHub 方法 方法一:最常见的就是 fq,但这个是违法的行为,自己私下搞可以,不能教你们。 方法二:利用加速器,这是正规合法操作。这里推荐一个免费的加速器,下载安装 Watt Toolkit加速器,原名…

【Apollo学习笔记】——规划模块TASK之SPEED_HEURISTIC_OPTIMIZER

文章目录 前言SPEED_BOUNDS_PRIORI_DECIDER功能简介SPEED_BOUNDS_PRIORI_DECIDER相关配置SPEED_BOUNDS_PRIORI_DECIDER流程1. 对路程和时间进行采样以及速度限制2. 设计状态转移方程(cost计算)2.0 CalculateCostAt代价计算2.1 GetObstacleCost障碍物cost…

void指针

void指针为无类型指针,可以指向任何类型数据。 作用 C语言中引入void指针类型在于两个方面 对函数返回的限定对函数参数的限定 注意:void类型指针可以接受其他数据类型指针的赋值,但如果需要将void指针的值赋给其它类型的指针,…

嵌入式开发-SPI通信介绍

SPI(Serial Peripheral Interface)是一种串行外设接口规范,它是由摩托罗拉公司制定的一种通讯协议。它广泛应用于微控制器、存储器和其他外设之间的通信。 SPI是一种同步串行通信协议,它支持四线通信: SCK&#xff0…

ARM编程模型-内存空间和数据

ARM属于RISC体系,许多指令单周期指令,是32位读取/存储架构,对内存访问是32位,Load and store的架构,只有寄存器对内存,不能内存对内存存储,CPU通过寄存器对内存进行读写操作。 ARM的寻址空间是线…

会计--出纳实操实务小白入门

文章目录 P1、出纳基础一、出纳与会计区别二、出纳的具体工作三、出纳的工作流程(日、月、年工作安排) P2、出纳技能1:大小写金额以及日期书写规范一、数字书写要求二、小写金额“封头”与“封尾”三、大写金额“封头”与“封尾”四、日期大写…

垃圾回收 -标记清除算法

就如他的字面意思一样,由标记阶段和清除阶段构成。标记阶段是把所有的活动对象都做上标记的阶段。清除阶段是把那些没有标记的对象,也就是非活动对象回收的阶段。通过这两个阶段,就可以令不能利用的内存空间重新得到利用。 1、 标记阶段 ma…

bazel远程缓存(Remote Cache)

原理 您可以将服务器设置为构建输出(即这些操作输出)的远程缓存。这些输出由输出文件名列表及其内容的哈希值组成。借助远程缓存,您可以重复使用其他用户的 build 中的构建输出,而不是在本地构建每个新输出。 增量构建极大的提升…

音频——I2S TDM 模式(六)

I2S 基本概念飞利浦(I2S)标准模式左(MSB)对齐标准模式右(LSB)对齐标准模式DSP 模式TDM 模式 文章目录 TDM formatTDM format ATDM format BTDM format C总结 TDM format TDM 分为两种常用操作模式:TDM A mode 和 TDM B mode, 统称为TDM mode 基于 TDM mode&#x…

Docker 容器逃逸漏洞 (CVE-2020-15257)复现

漏洞概述 containerd是行业标准的容器运行时,可作为Linux和Windows的守护程序使用。在版本1.3.9和1.4.3之前的容器中,容器填充的API不正确地暴露给主机网络容器。填充程序的API套接字的访问控制验证了连接过程的有效UID为0,但没有以其他方式…

7.2 项目2 学生通讯录管理:文本文件增删改查(C 版本)(自顶向下设计+断点调试) (A)

C自学精简教程 目录(必读) 该作业是 作业 学生通讯录管理:文本文件增删改查(C版本) 的C 语言版本。 具体的作业题目描述,要求,可以参考 学生通讯录管理:文本文件增删改查(C版本)。…

性能测试有哪些常见的测试指标?

一、什么是性能测试 先看下百度百科对它的定义 <font size"3">性能测试是通过自动化的测试工具模拟多种正常、峰值以及异常负载条件来对系统的各项性能指标进行测试。</font> 我们可以认为性能测试是&#xff1a;通过在测试环境下对系统或构件的性能进…

【数据结构】栈---C语言版(详解!!!)

文章目录 &#x1f438;一、栈的概念及结构&#x1f344;1、栈的概念定义&#x1f344;2、动图演示&#x1f332;入栈&#x1f332;出栈&#x1f332;整体过程 &#x1f438;二、栈的实现&#x1f438;三、数组结构栈详解&#x1f34e;创建栈的结构⭕接口1&#xff1a;定义结构…

2023开学礼《乡村振兴战略下传统村落文化旅游设计》许少辉师大图书馆

2023开学礼《乡村振兴战略下传统村落文化旅游设计》许少辉师大图书馆

配置keil生成asm汇编文件

简介&#xff1a;ASM是汇编语言源程序的扩展名&#xff1b;程序在编译的过程中&#xff0c;会将源代码编译会汇编代码&#xff0c;一步步生成可执行文件&#xff1b; 1&#xff1a;keil中options的配置 这个语法应该是根据工程工程哪里的配置名称来的&#xff0c;也可以使用固…