文章目录
- 一、题目
- 二、解法
- 三、完整代码
所有的LeetCode题解索引,可以看这篇文章——【算法和数据结构】LeetCode题解。
一、题目
二、解法
思路分析:【算法与数据结构】106、LeetCode从中序与后序遍历序列构造二叉树这两道题有些类似,相关代码可以互相参考,本题明示了要用递归来做,那么递归三要素不可缺少:输入参数和返回值;单层递归逻辑;终止条件。本题当中,输入参数引用二叉树遍历数组,同时根据最大值划分的边界[Begin, End),代码统一为左闭右开区间,区间具体如何划分设计到边界条件是否+1-1这种。返回值为root根节点。
程序如下:
class Solution {
public:
// 3、输入参数
TreeNode* traversal(const vector<int> &nums, int Begin, int End) {
// 1、终止条件
if (Begin == End) return NULL;
//2、单层递归逻辑
int maxIndex = Begin;
for (int i = Begin; i < End; i++) { // 找最大值
if (nums[i] > nums[maxIndex]) maxIndex = i;
}
TreeNode* root = new TreeNode(nums[maxIndex]);
// 最大值左边部分,左闭右开[leftBegin, leftEnd)
int leftBegin = Begin;
int leftEnd = maxIndex;
if (leftEnd < leftBegin) leftEnd = Begin;
// 最大值右边部分,左闭右开[rightBegin, rightEnd)
int rightBegin = maxIndex + 1;
int rightEnd = End;
if (rightBegin > rightEnd) rightBegin = End;
root->left = traversal(nums, leftBegin, leftEnd);
root->right = traversal(nums, rightBegin, rightEnd);
// 3、返回值
return root;
}
TreeNode* constructMaximumBinaryTree(vector<int>& nums) {
if (!nums.size()) return NULL;
return traversal(nums, 0, nums.size());
}
};
三、完整代码
# include <iostream>
# include <vector>
# include <queue>
using namespace std;
// 树节点定义
struct TreeNode {
int val;
TreeNode* left;
TreeNode* right;
TreeNode() : val(0), left(nullptr), right(nullptr) {}
TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
TreeNode(int x, TreeNode* left, TreeNode* right) : val(x), left(left), right(right) {}
};
class Solution {
public:
// 3、输入参数
TreeNode* traversal(const vector<int> &nums, int Begin, int End) {
// 1、终止条件
if (Begin == End) return NULL;
//2、单层递归逻辑
int maxIndex = Begin;
for (int i = Begin; i < End; i++) { // 找最大值
if (nums[i] > nums[maxIndex]) maxIndex = i;
}
TreeNode* root = new TreeNode(nums[maxIndex]);
// 最大值左边部分,左闭右开[leftBegin, leftEnd)
int leftBegin = Begin;
int leftEnd = maxIndex;
if (leftEnd < leftBegin) leftEnd = Begin;
// 最大值右边部分,左闭右开[rightBegin, rightEnd)
int rightBegin = maxIndex + 1;
int rightEnd = End;
if (rightBegin > rightEnd) rightBegin = End;
root->left = traversal(nums, leftBegin, leftEnd);
root->right = traversal(nums, rightBegin, rightEnd);
// 3、返回值
return root;
}
TreeNode* constructMaximumBinaryTree(vector<int>& nums) {
if (!nums.size()) return NULL;
return traversal(nums, 0, nums.size());
}
};
// 层序遍历
vector<vector<int>> levelOrder(TreeNode* root) {
queue<TreeNode*> que;
if (root != NULL) que.push(root);
vector<vector<int>> result;
while (!que.empty()) {
int size = que.size(); // size必须固定, que.size()是不断变化的
vector<int> vec;
for (int i = 0; i < size; ++i) {
TreeNode* node = que.front();
que.pop();
vec.push_back(node->val);
if (node->left) que.push(node->left);
if (node->right) que.push(node->right);
}
result.push_back(vec);
}
return result;
}
template<class T1, class T2>
void my_print2(T1& v, const string str) {
cout << str << endl;
for (class T1::iterator vit = v.begin(); vit < v.end(); ++vit) {
for (class T2::iterator it = (*vit).begin(); it < (*vit).end(); ++it) {
cout << *it << ' ';
}
cout << endl;
}
}
int main()
{
//int arr[] = {3, 2, 1, 6, 0, 5};
int arr[] = { 3, 2, 1};
vector<int> nums(arr, arr + sizeof(arr) / sizeof(int));
Solution s;
TreeNode* root = s.constructMaximumBinaryTree(nums);
vector<vector<int>> tree = levelOrder(root);
my_print2<vector<vector<int>>, vector<int>>(tree, "目标树:");
system("pause");
return 0;
}
end