Flink SQL你用了吗?

news2024/12/24 2:36:52

分析&回答

  • Flink 1.1.0:第一次引入 SQL 模块,并且提供 TableAPI,当然,这时候的功能还非常有限。
  • Flink 1.3.0:在 Streaming SQL 上支持了 Retractions,显著提高了 Streaming SQL 的易用性,使得 Flink SQL 支持了复杂的 Unbounded 聚合连接。
  • Flink 1.5.0:SQL Client 的引入,标志着 Flink SQL 开始提供纯 SQL 文本。
  • Flink 1.9.0:抽象了 Table 的 Planner 接口,引入了单独的 Blink Table 模块。Blink Table 模块是阿里巴巴内部的 SQL 层版本,不仅在结构上有重大变更,在功能特性上也更加强大和完善。
  • Flink 1.10.0:作为第一个 Blink 基本完成 merge 的版本,修复了大量遗留的问题,并给 DDL 带来了 Watermark 的语法,也给 Batch SQL 带来了完整的 TPC-DS 支持和高效的性能。

CDC 支持

SQL 1.11 Flink SQL 在原有的基础上扩展了新场景的支持:

  • Flink SQL 引入了对 CDC(Change Data Capture,变动数据捕获)的支持,它使 Flink 可以方便地通过像 Debezium 这类工具来翻译和消费数据库的变动日志。
  • Flink SQL 扩展了类 Filesystem connector 对实时化用户场景和格式的支持,从而可以支持将流式数据从 Kafka 写入 Hive 等场景。

CDC 支持

CDC 格式是数据库中一种常用的模式,业务上典型的应用是通过工具(比如 Debezium 或 Canal)将 CDC 数据通过特定的格式从数据库中导出到 Kafka 中。在以前,业务上需要定义特殊的逻辑来解析 CDC 数据,并把它转换成一般的 Insert-only 数据,后续的处理逻辑需要考虑到这种特殊性,这种 work-around 的方式无疑给业务上带来了不必要的复杂性。如果 Flink SQL 引擎能原生支持 CDC 数据的输入,将 CDC 对接到 Flink SQL 的 Changelog Stream 概念上,将会大大降低用户业务的复杂度。

流计算的本质是就是不断更新、不断改变结果的计算。考虑一个简单的聚合 SQL,流计算中,每次计算产生的聚合值其实都是一个局部值,所以会产生 Changelog Stream。在以前想要把聚合的数据输出到 Kafka 中,如上图所示,几乎是不可能的,因为 Kafka 只能接收 Insert-only 的数据。Flink 之前主要是因为 Source&Sink 接口的限制,导致不能支持 CDC 数据的输入。

Flink SQL 1.11 经过了大量的接口重构,在新的 Source&Sink 接口上,支持了 CDC 数据的输入和输出,并且支持了 Debezium 与 Canal 格式(FLIP-105)。这一改动使动态 Table Source 不再只支持 append-only 的操作,而且可以导入外部的修改日志(插入事件)将它们翻译为对应的修改操作(插入、修改和删除)并将这些操作与操作的类型发送到后续的流中。

如上图所示,理论上,CDC 同步到 Kafka 的数据就是 Append 的一个流,只是在格式中含有 Changelog 的标识:

  • 一种方式是把 Changlog 标识看做一个普通字段,这也是目前普遍的使用方式。
  • 在 Flink 1.11 后,可以将它声明成 Changelog 的格式,Flink 内部机制支持 Interpret Changelog,可以原生识别出这个特殊的流,将其转换为 Flink 的 Changlog Stream,并按照 SQL 的语义处理;同理,Flink SQL 也具有输出 Change Stream 的能力 (Flink 1.11 暂无内置实现),这就意味着,你可以将任意类型的 SQL 写入到 Kafka 中,只要有 Changelog 支持的 Format。
  • Flink 1.11 彻底的抛弃了推断 PK这个机制,不再从 Query 来推断 PK 了,而是完全依赖 Create table 语法。比如 Create 一个 jdbc_table,需要在定义中显式地写好 Primary Key(后面 NOT ENFORCED 的意思是不强校验,因为 Connector 也许没有具备 PK 的强校验的能力)。当指定了 PK,就相当于就告诉框架这个Jdbc Sink 会按照对应的 Key 来进行更新。如此,就跟 Query 完全没有关系了,这样的设计可以定义得非常清晰,如何更新完全按照设置的定义来。

Hive 流批一体

首先看传统的 Hive 数仓。一个典型的 Hive 数仓如下图所示。一般来说,ETL 使用调度工具来调度作业,比如作业每天调度一次或者每小时调度一次。这里的调度,其实也是一个叠加的延迟。调度产生 Table1,再产生 Table2,再调度产生 Table3,计算延时需要叠加起来。

问题是慢,延迟大,并且 Ad-hoc 分析延迟也比较大,因为前面的数据入库,或者前面的调度的 ETL 会有很大的延迟。Ad-hoc 分析再快返回,看到的也是历史数据。

所以现在流行构建实时数仓,从 Kafka 读计算写入 Kafka,最后再输出到 BI DB,BI DB 提供实时的数据服务,可以实时查询。Kafka 的 ETL 为实时作业,它的延时甚至可能达到毫秒级。实时数仓依赖 Queue,它的所有数据存储都是基于 Queue 或者实时数据库,这样实时性很好,延时低。但是:

  • 第一,基于 Queue,一般来说就是行存加 Queue,存储效率其实不高。
  • 第二,基于预计算,最终会落到 BI DB,已经是聚合好的数据了,没有历史数据。而且 Kafka 存的一般来说都是 15 天以内的数据,没有历史数据,意味着无法进行 Ad-hoc 分析。所有的分析全是预定义好的,必须要起对应的实时作业,且写到 DB 中,这样才可用。对比来说,Hive 数仓的好处在于它可以进行 Ad-hoc 分析,想要什么结果,就可以随时得到什么结果。

能否结合离线数仓和实时数仓两者的优势,然后构建一个 Lambda 的架构?

核心问题在于成本过高。无论是维护成本、计算成本还是存储成本等都很高。并且两边的数据还要保持一致性,离线数仓写完 Hive 数仓、SQL,然后实时数仓也要写完相应 SQL,将造成大量的重复开发。还可能存在团队上分为离线团队和实时团队,两个团队之间的沟通、迁移、对数据等将带来大量人力成本。如今,实时分析会越来越多,不断的发生迁移,导致重复开发的成本也越来越高。少部分重要的作业尚可接受,如果是大量的作业,维护成本其实是非常大的。

如何既享受 Ad-hoc 的好处,又能实现实时化的优势?一种思路是将 Hive 的离线数仓进行实时化,就算不能毫秒级的实时,准实时也好。所以,Flink 1.11 在 Hive 流批一体上做了一些探索和尝试,如下图所示。它能实时地按 Streaming 的方式来导出数据,写到 BI DB 中,并且这套系统也可以用分析计算框架来进行 Ad-hoc 的分析。这个图当中,最重要的就是 Flink Streaming 的导入。

反思&扩展

其实用与没用不需要绝对回答,根据你自己实际的使用来就好了。
Flink SQL很多时候在测试的时候很好用,在单纯实时计算的时候也非常不错,如果你要做实时数仓,其实并不一定是最好的选择,能高效低成本的打通离线数据和实时数据才是王道。

喵呜面试助手:一站式解决面试问题,你可以搜索微信小程序 [喵呜面试助手] 或关注 [喵呜刷题] -> 面试助手 免费刷题。如有好的面试知识或技巧期待您的共享!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/957741.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

排序之选择排序

文章目录 前言一、直接选择排序1、直接选择排序基本思想2、直接选择排序代码实现3、直接选择排序的效率 二、堆排序1、堆排序2、堆排序的效率 前言 选择排序的基本思想就是每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,…

汇编--int指令

中断信息可以来自CPU的内部和外部, 当CPU的内部有需要处理的事情发生的时候,将产生需要马上处理的中断信息,引发中断过程。在http://t.csdn.cn/jihpG,我们讲解了中断过程和两种内中断的处理。 这一章中, 我们讲解另一种…

freemarker学习+集成springboot+导出word

目录 一 FreeMarker简介 二 集成springboot,实现案例导出 三 常见面试题总结 一 FreeMarker简介 FreeMarker 是一款 模板引擎: 即一种基于模板和要改变的数据, 并用来生成输出文本(HTML网页,电子邮件,配置文件&…

2024河南光伏展|河南储能展|河南国际太阳能光伏储能展览会

2024第四届中国(郑州)太阳能光伏及储能产业展览会 时间:2024年2月26-28日 地点:郑州.中原国际博览中心 河南国际太阳能光伏及储能产业展览会是一个盛大的行业聚会,旨在展示、交流、合作和创新。这个展览会将会是一个…

MATLAB中residue函数用法

目录 语法 说明 示例 求解具有实根的部分分式展开式 展开具有复数根和同次分子及分母的分式 展开分子次数高于分母次数的分式 residue函数的功能是部分分式展开(部分分式分解)。 语法 [r,p,k] residue(b,a) [b,a] residue(r,p,k) 说明 [r,p…

echarts饼图点击区块事件

效果图: 代码: let option {color: pieColors,series: [{name: Access From,type: pie,radius: [36%, 56%],avoidLabelOverlap: false,label: {formatter: params > {// console.log(params)return {color${params.dataIndex}|${params.name}(${par…

Scala集合继承体系图

Scala集合简介 1) Scala 的集合有三大类:序列 Seq、集Set、映射 Map,所有的集合都扩展自 Iterable特质。 2) 对于几乎所有的集合类,Scala 都同时提供了可变和不可变的版本,分别位于以下两个包 不可变集合…

软件确认测试的依据有哪些

确认测试 随着我国软件市场的日益繁荣和软件产品的大量涌现,软件评测的重要性越来越显现出来了。 一、确认测试的作用 1、软件确认测试对保障软件产品质量,开拓国际软件市场,促进软件市场健康发展都将发挥重要作用。 2、确认测试的目的是要表明软件是可以工作的&#xff0c…

【Nacos】2023.9.1 最新Nacos源码启动教程 | 超详细 | 包含踩坑经历和解决办法

在官网下载Nacos源码压缩包,或者使用git克隆到本地,使用IDEA打开项目。 Nacos GitHub地址 修改项目的jdk版本为1.8,修改maven使用的jdk版本也是1.8 打开最外边的pom文件,注释掉代码规范检查的插件(nacos源码有些impor…

机器学习——聚类算法一

机器学习——聚类算法一 文章目录 前言一、基于numpy实现聚类二、K-Means聚类2.1. 原理2.2. 代码实现2.3. 局限性 三、层次聚类3.1. 原理3.2. 代码实现 四、DBSCAN算法4.1. 原理4.2. 代码实现 五、区别与相同点1. 区别:2. 相同点: 总结 前言 在机器学习…

springboot+activiti5.0整合(工作流引擎)

概述 springboot整合activiti使用modeler进行流程创建&#xff0c;编辑、部署以及删除实例&#xff08;可运行&#xff09; 详细 1、现在来说一下流程&#xff0c;先建立spring boot项目&#xff0c;导入对应的jar包。 <dependencies><dependency><groupId&…

Java 循环语句解析:从小白到循环达人

如果你正在学习编程&#xff0c;那么循环语句是一个绕不开的重要话题。循环语句让我们能够重复执行一段代码&#xff0c;从而实现各种各样的功能。在本篇博客中&#xff0c;我们将围绕 Java 编程语言中的循环语句展开&#xff0c;从最基础的概念出发&#xff0c;一步步引领你从…

Qt日历控件示例-QCalendarWidget

基本说明 QCalendarWidget介绍&#xff1a; QCalendarWidget 是 Qt 框架中提供的一个日期选择控件,用户可以通过该控件快速选择需要的日期,并且支持显示当前月份的日历。 这里&#xff0c;我们继承了QCalendarWidget&#xff0c;做了一些简单封装和样式调整 1.使用的IDE&…

java_error_in_idea.hprof 文件

在用户目录下的java_error_in_idea.hprof文件(/Users/用户) 大约1.5个G,IDEA的错误日志,可以删除

shiny根据数据的长度设置多个色板

shiny根据数据的长度设置多个色板 library(shiny) library(colourpicker) ui <- fluidPage(# 添加一个选择颜色的下拉菜单uiOutput("color_dropdown") )server <- function(input, output) {# 数据长度data_length <- reactive({length(c("数据1"…

Linux(centos) 下 Mysql 环境安装

linux 下进行环境安装相对比较简单&#xff0c;可还是会遇到各种奇奇怪怪的问题&#xff0c;我们来梳理一波 安装 mysql 我们会用到下地址&#xff1a; Mysql 官方文档的地址&#xff0c;可以参考&#xff0c;不要全部使用 https://dev.mysql.com/doc/refman/8.0/en/linux-i…

文献阅读:Deep Learning based Semantic Communications: An Initial Investigation

目录 论文简介动机&#xff1a;为什么作者想要解决这个问题&#xff1f;贡献&#xff1a;作者在这篇论文中完成了什么工作(创新点)&#xff1f;规划&#xff1a;他们如何完成工作&#xff1f;理由&#xff1a;通过什么实验验证它们的工作结果自己的看法 论文简介 作者 Huiqiang…

day-06 多进程服务器端 -- 进程间通信

一.多进程服务器端 &#xff08;一&#xff09;进程概念及应用 利用之前学习到的内容&#xff0c;我们的服务器可以按照顺序处理多个客户端的服务请求。在客户端和服务时间增长的情况下&#xff0c;服务器就不足以满足需求了。 1.两种类型的服务器端 &#xff08;1&#xff…

安全基础 --- https详解(02)、cookie和session、同源和跨域

https详解&#xff08;02&#xff09;--- 数据包扩展 Request --- 请求数据包Response --- 返回数据包 若出现代理则如下图&#xff1a; Proxy --- 代理服务器 &#xff08;1&#xff09;http和https的区别 http明文传输&#xff0c;数据未加密&#xff1b;http页面响应速度…

【Java 动态数据统计图】动态X轴二级数据统计图思路Demo(动态,排序,动态数组(重点推荐:难)九(131)

需求&#xff1a; 1.有一组数据集合&#xff0c;数据集合中的数据为动态&#xff1b; 举例如下&#xff1a; [{province陕西省, city西安市}, {province陕西省, city咸阳市}, {province陕西省, city宝鸡市}, {province陕西省, city延安市}, {province陕西省, city汉中市}, {pr…