Densenet模型详解

news2024/10/7 10:24:45

模型介绍

DenseNet的主要思想是密集连接,它在卷积神经网络(CNN)中引入了密集块(Dense Block),在这些块中,每个层都与前面所有层直接连接。这种设计可以让信息更快速地传播,有助于解决梯度消失的问题,同时也能够增加网络的参数共享,减少参数量,提高模型的效率和性能。

Densenet原理

DenseNet 的原理可以总结为以下几个关键点:

  1. 密集连接的块: DenseNet 将网络分成多个密集块(Dense Block)。在每个密集块内,每一层都连接到前面所有的层,不仅仅是前一层。这种连接方式使得信息能够更加快速地传播,允许网络在更早的阶段融合不同层的特征。

  2. 跳跃连接: 每一层都从前面所有的层接收特征作为输入。这些输入通过堆叠而来,从而构成了一个密集的特征图。这种跳跃连接有助于解决梯度消失问题,因为每一层都可以直接访问之前层的梯度信息,使得训练更加稳定。

  3. 特征重用性: 由于每一层都与前面所有层连接,网络可以自动地学习到更加丰富和复杂的特征表示。这样的特征重用性有助于提高网络的性能,同时减少了需要训练的参数数量。

  4. 过渡层: 在密集块之间,通常会使用过渡层(Transition Layer)来控制特征图的大小。过渡层包括一个卷积层和一个池化层,用于减小特征图的尺寸,从而减少计算量。

Densenet的结构

关于 DenseNet 的结构时,我们主要关注网络中的三个主要组成部分:密集块(Dense Block)、过渡层(Transition Layer)以及全局平均池化层。

密集块

密集块是 DenseNet 最核心的部分,由若干层组成。在密集块中,每一层都与前面所有层直接连接。这种密集连接的方式使得信息可以更充分地传递和重用。每一层的输出都是前面所有层输出的连结,这也意味着每一层的输入包括了前面所有层的特征。这种连接方式通过堆叠层的方式,构建了一个密集的特征图。

过渡层

在密集块之间,可以使用过渡层来控制特征图的大小,从而减少计算成本。过渡层由一个卷积层和一个池化层组成。卷积层用于减小通道数,从而降低特征图的维度。池化层(通常是平均池化)用于减小特征图的尺寸。这些操作有助于在保持网络性能的同时降低计算需求。

全局平均池化层

在整个 DenseNet 结构的末尾,通常会添加一个全局平均池化层。这一层的作用是将最终的特征图转换为全局汇总的特征,这对于分类任务是非常有用的。全局平均池化层计算每个通道上的平均值,将每个通道转换为一个标量,从而形成最终的预测。

DenseNet 结构的特点不仅在每个密集块内进行特征的密集连接,还在不同密集块之间使用过渡层来控制网络的尺寸和复杂度。这使得 DenseNet 能够在高度复杂的任务中表现出色,同时保持相对较少的参数。

这些在论文当中也有体现:

Densenet的优缺点比较

优点

  • 密集连接促进信息传递和特征重用,提升了网络性能。

  • 跳跃连接减少了梯度消失,有助于训练深层网络。

  • 密集连接减少参数数量,提高了模型效率。

  • 早期融合多尺度特征,增强了表征能力。

  • 在小样本情况下表现更佳,充分利用有限数据。

缺点

  • 密集连接可能导致内存需求增大。

  • 连接多导致计算量增加,训练和推理时间较长。

  • 可能因复杂性导致过拟合,需考虑正则化。

其实综合考虑,Densenet在图像识别和计算机视觉任务中仍然是一个好的选择。

Pytorch实现Densenet

import torch
import torchvision
import torch.nn as nn
import torchsummary
import torch.nn.functional as F
from torch.hub import load_state_dict_from_url
from collections import OrderedDict
from torchvision.utils import _log_api_usage_once
import torch.utils.checkpoint as cp

model_urls = {
    "densenet121":"https://download.pytorch.org/models/densenet121-a639ec97.pth",
    "densenet161":"https://download.pytorch.org/models/densenet161-8d451a50.pth",
    "densenet169":"https://download.pytorch.org/models/densenet169-b2777c0a.pth",
    "densenet201":"https://download.pytorch.org/models/densenet201-c1103571.pth",
}
cfgs = {
    "densenet121":(6, 12, 24, 16),
    "densenet161":(6, 12, 36, 24),
    "densenet169":(6, 12, 32, 32),
    "densenet201":(6, 12, 48, 32),
}


class DenseLayer(nn.Module):
    def __init__(self, num_input_features, growth_rate, bn_size, drop_rate, memory_efficient = False):
        super(DenseLayer,self).__init__()
        self.norm1 = nn.BatchNorm2d(num_input_features)
        self.relu1 = nn.ReLU(inplace=True)
        self.conv1 = nn.Conv2d(num_input_features, bn_size * growth_rate, kernel_size=1, stride=1, bias=False)

        self.norm2 = nn.BatchNorm2d(bn_size * growth_rate)
        self.relu2 = nn.ReLU(inplace=True)
        self.conv2 = nn.Conv2d(bn_size * growth_rate, growth_rate, kernel_size=3, stride=1, padding=1, bias=False)

        self.drop_rate = float(drop_rate)
        self.memory_efficient = memory_efficient

    def bn_function(self, inputs):
        concated_features = torch.cat(inputs, 1)
        bottleneck_output = self.conv1(self.relu1(self.norm1(concated_features)))
        return bottleneck_output

    def any_requires_grad(self, input):
        for tensor in input:
            if tensor.requires_grad:
                return True
        return False

    @torch.jit.unused
    def call_checkpoint_bottleneck(self, input):
        def closure(*inputs):
            return self.bn_function(inputs)

        return cp.checkpoint(closure, *input)

    def forward(self, input):
        if isinstance(input, torch.Tensor):
            prev_features = [input]
        else:
            prev_features = input

        if self.memory_efficient and self.any_requires_grad(prev_features):
            if torch.jit.is_scripting():
                raise Exception("Memory Efficient not supported in JIT")

            bottleneck_output = self.call_checkpoint_bottleneck(prev_features)
        else:
            bottleneck_output = self.bn_function(prev_features)

        new_features = self.conv2(self.relu2(self.norm2(bottleneck_output)))
        if self.drop_rate > 0:
            new_features = F.dropout(new_features, p=self.drop_rate, training=self.training)
        return new_features


class DenseBlock(nn.ModuleDict):
    def __init__(self,num_layers,num_input_features,bn_size,growth_rate,
                 drop_rate,memory_efficient = False,):
        super(DenseBlock,self).__init__()
        for i in range(num_layers):
            layer = DenseLayer(
                num_input_features + i * growth_rate,
                growth_rate=growth_rate,
                bn_size=bn_size,
                drop_rate=drop_rate,
                memory_efficient=memory_efficient,
            )
            self.add_module("denselayer%d" % (i + 1), layer)

    def forward(self, init_features):
        features = [init_features]
        for name, layer in self.items():
            new_features = layer(features)
            features.append(new_features)
        return torch.cat(features, 1)


class Transition(nn.Sequential):
    """
    Densenet Transition Layer:
        1 × 1 conv
        2 × 2 average pool, stride 2
    """
    def __init__(self, num_input_features, num_output_features):
        super(Transition,self).__init__()
        self.norm = nn.BatchNorm2d(num_input_features)
        self.relu = nn.ReLU(inplace=True)
        self.conv = nn.Conv2d(num_input_features, num_output_features, kernel_size=1, stride=1, bias=False)
        self.pool = nn.AvgPool2d(kernel_size=2, stride=2)


class DenseNet(nn.Module):
    def __init__(self,growth_rate = 32,num_init_features = 64,block_config = None,num_classes = 1000,
                 bn_size = 4,drop_rate = 0.,memory_efficient = False,):

        super(DenseNet,self).__init__()
        _log_api_usage_once(self)

        # First convolution
        self.features = nn.Sequential(
            OrderedDict(
                [
                    ("conv0", nn.Conv2d(3, num_init_features, kernel_size=7, stride=2, padding=3, bias=False)),
                    ("norm0", nn.BatchNorm2d(num_init_features)),
                    ("relu0", nn.ReLU(inplace=True)),
                    ("pool0", nn.MaxPool2d(kernel_size=3, stride=2, padding=1)),
                ]
            )
        )

        # Each denseblock
        num_features = num_init_features
        for i, num_layers in enumerate(block_config):
            block = DenseBlock(
                num_layers=num_layers,
                num_input_features=num_features,
                bn_size=bn_size,
                growth_rate=growth_rate,
                drop_rate=drop_rate,
                memory_efficient=memory_efficient,
            )
            self.features.add_module("denseblock%d" % (i + 1), block)
            num_features = num_features + num_layers * growth_rate
            if i != len(block_config) - 1:
                trans = Transition(num_input_features=num_features, num_output_features=num_features // 2)
                self.features.add_module("transition%d" % (i + 1), trans)
                num_features = num_features // 2

        # Final batch norm
        self.features.add_module("norm5", nn.BatchNorm2d(num_features))
        # Linear layer
        self.classifier = nn.Linear(num_features, num_classes)

        # Official init from torch repo.
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight)
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)
            elif isinstance(m, nn.Linear):
                nn.init.constant_(m.bias, 0)

    def forward(self, x):
        features = self.features(x)
        out = F.relu(features, inplace=True)
        out = F.adaptive_avg_pool2d(out, (1, 1))
        out = torch.flatten(out, 1)
        out = self.classifier(out)
        return out

def densenet(growth_rate=32,num_init_features=64,num_classes=1000,mode="densenet121",pretrained=False,**kwargs):
    import re
    pattern = re.compile(
        r"^(.*denselayer\d+\.(?:norm|relu|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$"
    )
    if mode == "densenet161":
        growth_rate=48
        num_init_features=96
    model = DenseNet(growth_rate, num_init_features, cfgs[mode],num_classes=num_classes, **kwargs)
    if pretrained:
        state_dict = load_state_dict_from_url(model_urls[mode], model_dir='./model', progress=True)  # 预训练模型地址
        for key in list(state_dict.keys()):
            res = pattern.match(key)
            if res:
                new_key = res.group(1) + res.group(2)
                state_dict[new_key] = state_dict[key]
                del state_dict[key]
        if num_classes != 1000:
            num_new_classes = num_classes
            weight = state_dict['classifier.weight']
            bias = state_dict['classifier.bias']
            weight_new = weight[:num_new_classes, :]
            bias_new = bias[:num_new_classes]
            state_dict['classifier.weight'] = weight_new
            state_dict['classifier.bias'] = bias_new
        model.load_state_dict(state_dict)
    return model

from torchsummaryX import summary

if __name__ == "__main__":
    in_channels = 3
    num_classes = 10

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model = densenet(growth_rate=32, num_init_features=64, num_classes=num_classes, mode="densenet121", pretrained=True)
    model = model.to(device)
    print(model)
    summary(model, torch.zeros((1, in_channels, 224, 224)).to(device))

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/953897.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

数据可视化工具中的显眼包:奥威BI自带方案上阵

根据经验来看,BI数据可视化分析项目是由BI数据可视化工具和数据分析方案两大部分共同组成,且大多数时候方案都需从零开始,反复调整,会耗费大量时间精力成本。而奥威BI数据可视化工具别具匠心,将17年经验凝聚成标准化、…

(AcWing) spfa求最短路

给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环, 边权可能为负数。 请你求出 1 号点到 n 号点的最短距离,如果无法从 1 号点走到 n 号点,则输出 impossible。 数据保证不存在负权回路。 输入格式 第一行包含整数 n 和…

indexDb使用

indexDb是什么? indexDb是除了cookie,localstorage,sessionstroage外的另一种前端存贮方式。 现有前端存贮比较 indexDb特点 无大小限制,适用于前端存贮数据较多场景存贮结构以对象仓库形式,可以存入任何类型数据&a…

企业智能知识管理在线工具语雀、helplook、石墨文档、Baklib怎么样?

语雀、helplook、石墨文档和Baklib都是企业智能知识管理的在线工具,它们都提供了一系列功能来帮助企业管理和共享知识。下面我将对这些工具进行详细的介绍和评价。 语雀: 语雀是一款功能强大的在线知识管理工具,它提供了丰富的功能和优秀的…

Java对接海康威视(二次开发)组织信息、人员信息等

一.获取合作方数据 1.在【综合安防平台】的【关于】中前往【运行管理中心】 2.输入账户和密码进入【运行管理中心】 3.点击【状态监控】,搜索【能力开放网关】,点击【API管理】,查询可以对接的接口,点击对应的接口名称可以查看请求参数和返回…

抽象又有点垃圾的JavaScript

常数的排序 let x 10;let y 20;let z;if (x < y) {z x;x y;y z;}console.log(x, y);//x 20 ,y 10 通过一个媒介来继承x的初始值&#xff0c;然后将y的值赋值给x&#xff0c;再把媒介z的值赋值给y&#xff0c;达到排序 一个可重复使用的排序程序 第一种 function s…

微力同步私人网盘部署教程:利用端口映射实现远程访问的解决方案

文章目录 1.前言2. 微力同步网站搭建2.1 微力同步下载和安装2.2 微力同步网页测试2.3 cpolar的安装和注册 3.本地网页发布3.1 Cpolar云端设置3.2 Cpolar本地设置 4. 公网访问测试5. 结语 1.前言 私有云盘作为云存储概念的延伸&#xff0c;虽然谈不上多么新颖&#xff0c;但是其…

ReID网络:MGN网络(4) - Loss计算

1. MGN Loss MGN采用三元损失(Triplet Loss)。 三元损失主要用于ReID算法&#xff0c;目的是帮助网络学习到一个好的Embedding信息。之所以称之为三元损失&#xff0c;主要原因在于在训练中&#xff0c;参与计算Loss的分别有Anchor、Positive和Negative三方。 2. Triplet Lo…

实现远程访问Linux堡垒机:通过JumpServer系统进行安全的服务器管理

文章目录 前言1. 安装Jump server2. 本地访问jump server3. 安装 cpolar内网穿透软件4. 配置Jump server公网访问地址5. 公网远程访问Jump server6. 固定Jump server公网地址 前言 JumpServer 是广受欢迎的开源堡垒机&#xff0c;是符合 4A 规范的专业运维安全审计系统。JumpS…

Vue2里监听localstorage里值的变化

有的时候,我们需要根据本地缓存在localstorage里值的变化做出相应的操作,这就需要我们监听localstorage: 首先,我们在src下的libs文件夹下新建一个stroage.js用于重写setItem事件,当使用setItem的时候,触发,window.dispatchEvent派发事件 const Stroage = {// 重写set…

8.Redis-set

Set 常用命令saddsmemberssismemberscardspopsmovesrem集合间操作sinter 交集sinterstoresunion 并集sunionstoresdiff 差集sdiffstore 命令总结 内部编码应用场景使用 set来保存用户的“标签” set(集合)就是把一些有关联的数据放刀一起。 它与list的区别如下&#xff1a; 集合…

DP4863 国产双声道音频功率放大器芯片

产品概述&#xff1a; DP4863 电路是一种双声道桥接音频功率放大器。在 5 V 电源电压下&#xff0c;它能向 4 Ω 负载提供 2.2 W 的输出功率&#xff0c;或向 3 Ω 负载提供 2.5 W的输出功率&#xff0c;THD N 小于 1 %。此外&#xff0c;它还具有耳机输入端&#xff0c;可驱…

应用程序管理工具

应用程序管理是 DevOps 的重要组成部分。它可以定义为在所有阶段监控和管理软件应用程序的可用性、运行状况、性能和功能的过程&#xff0c;包括规划、设计、构建、测试、部署、维护和更新。这意味着应用程序从概念到停止都受到监控。 应用程序管理的重要性 管理应用程序可确…

关于一个git的更新使用流程

1.第一步使用git bash 使用git bash命令来进行操作&#xff08;当然我是个人比较喜欢用这种方法的&#xff09; 2. 第二步&#xff1a;连接 3.第三步&#xff1a;进入 4.第四步&#xff1a;查看分支 5.第五步&#xff1a;切换分支 将本地文件更新后之后进行提交 6.第六步&am…

山西电力市场日前价格预测【2023-09-01】

日前价格预测 预测明日&#xff08;2023-09-01&#xff09;山西电力市场全天平均日前电价为305.25元/MWh。其中&#xff0c;最高日前电价为349.30元/MWh&#xff0c;预计出现在19: 30。最低日前电价为240.52元/MWh&#xff0c;预计出现在12: 45。 价差方向预测 1&#xff1a; 实…

业主方怎么管理固定资产

业主方可以通过以下几种方式来管理固定资产&#xff1a; 建立资产管理制度&#xff1a;制定明确的资产采购、使用、维护、报废等流程和标准&#xff0c;确保资产管理的规范性和透明度。 采用专业的资产管理软件&#xff1a;通过数字化手段对固定资产进行管理和监控&#xff0c;…

【Dart】学习使用(二):基本类型

前言 基本类型是语言的基础。 Dart 语言支持以下基础类型&#xff1a;Numbers(int、double)&#xff0c; 整形Strings(String), 字符串Booleans(bool) , 布尔型Records((value1,value2)) 记录Lists(List ) 数组Sets(Set) 集合Maps(Map) 映射Runes(Runes,通常由 characters AP…

docker作业

目录 1、使用mysql:5.6和 owncloud 镜像&#xff0c;构建一个个人网盘。 1.1启动镜像 1.2启动cloud镜像 1.3浏览器访问 ​编辑 2、安装搭建私有仓库 Harbor 2.1下载docker-compose 2.2 磁盘挂载&#xff0c;保存harbor 2.3 修改配置文件 2.4安装 2.5浏览器访问 2.6 新…

解决OpenCV的GStreamer warning警告

调用 cv::VideoCapture出现的警告&#xff1a; [ WARN:0] global ../modules/videoio/src/cap_gstreamer.cpp (1758) handleMessage OpenCV | GStreamer warning: Embedded video playback halted; module v4l2src0 reported: Internal data stream error. [ WARN:0] global .…

匿名函数( lambda 表达式)

在 C 中&#xff0c;匿名函数也被称为 lambda 表达式。C11 引入了 lambda 表达式&#xff0c;使得在需要函数对象&#xff08;函数符&#xff09;的地方可以使用匿名函数来代替。 lambda 表达式的基本语法如下&#xff1a; [capture list] (parameter list) -> return typ…