今日主要总结一下动态规划的一道题目,309. 最佳买卖股票时机含冷冻期
题目:309. 最佳买卖股票时机含冷冻期
Leetcode题目地址
题目描述:
给定一个整数数组prices,其中第 prices[i] 表示第 i 天的股票价格 。
设计一个算法计算出最大利润。在满足以下约束条件下,你可以尽可能地完成更多的交易(多次买卖一支股票):
卖出股票后,你无法在第二天买入股票 (即冷冻期为 1 天)。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
示例 1:
输入: prices = [1,2,3,0,2]
输出: 3
解释: 对应的交易状态为: [买入, 卖出, 冷冻期, 买入, 卖出]
示例 2:
输入: prices = [1]
输出: 0
提示:
1 <= prices.length <= 5000
0 <= prices[i] <= 1000
本题重难点
这道题目相对于一文搞懂动态规划之122. 买卖股票的最佳时机 II问题本题加上了一个冷冻期
在一文搞懂动态规划之122. 买卖股票的最佳时机 II问题中有两个状态,持有股票后的最多现金,和不持有股票的最多现金。
动规五部曲,分析如下:
- 确定dp数组以及下标的含义
dp[i][j],第i天状态为j,所剩的最多现金为dp[i][j]。
其实本题很多同学搞的比较懵,是因为出现冷冻期之后,状态其实是比较复杂度,例如今天买入股票、今天卖出股票、今天是冷冻期,都是不能操作股票的。 具体可以区分出如下四个状态:
状态一:持有股票状态(今天买入股票,或者是之前就买入了股票然后没有操作)
而卖出股票状态,这里就有两种卖出股票状态
状态二:两天前就卖出了股票,度过了冷冻期,一直没操作,今天保持卖出股票状态
状态三:今天卖出了股票
状态四:今天为冷冻期状态,但冷冻期状态不可持续,只有一天!
j的状态为:
0:状态一
1:状态二
2:状态三
3:状态四
很多题解为什么讲的比较模糊,是因为把这四个状态合并成三个状态了,其实就是把状态二和状态四合并在一起了。
从代码上来看确实可以合并,但从逻辑上分析合并之后就很难理解了,所以我下面的讲解是按照这四个状态来的,把每一个状态分析清楚。
注意这里的每一个状态,例如状态一,是买入股票状态并不是说今天已经就买入股票,而是说保存买入股票的状态即:可能是前几天买入的,之后一直没操作,所以保持买入股票的状态。
- 确定递推公式
达到买入股票状态(状态一)即:dp[i][0],有两个具体操作:
操作一:前一天就是持有股票状态(状态一),dp[i][0] = dp[i - 1][0]
操作二:今天买入了,有两种情况
前一天是冷冻期(状态四),dp[i - 1][3] - prices[i]
前一天是保持卖出股票状态(状态二),dp[i - 1][1] - prices[i]
所以操作二取最大值,即:max(dp[i - 1][3], dp[i - 1][1]) - prices[i]
那么dp[i][0] = max(dp[i - 1][0], max(dp[i - 1][3], dp[i - 1][1]) - prices[i]);
达到保持卖出股票状态(状态二)即:dp[i][1],有两个具体操作:
操作一:前一天就是状态二
操作二:前一天是冷冻期(状态四)
dp[i][1] = max(dp[i - 1][1], dp[i - 1][3]);
达到今天就卖出股票状态(状态三),即:dp[i][2] ,只有一个操作:
操作一:昨天一定是买入股票状态(状态一),今天卖出
即:dp[i][2] = dp[i - 1][0] + prices[i];
达到冷冻期状态(状态四),即:dp[i][3],只有一个操作:
操作一:昨天卖出了股票(状态三)
dp[i][3] = dp[i - 1][2];
综上分析,递推代码如下:
dp[i][0] = max(dp[i - 1][0], max(dp[i - 1][3], dp[i - 1][1]) - prices[i]);
dp[i][1] = max(dp[i - 1][1], dp[i - 1][3]);
dp[i][2] = dp[i - 1][0] + prices[i];
dp[i][3] = dp[i - 1][2];
-
dp数组如何初始化
这里主要讨论一下第0天如何初始化。
如果是持有股票状态(状态一)那么:dp[0][0] = -prices[0],买入股票所剩现金为负数。
保持卖出股票状态(状态二),第0天没有卖出dp[0][1]初始化为0就行,
今天卖出了股票(状态三),同样dp[0][2]初始化为0,因为最少收益就是0,绝不会是负数。
同理dp[0][3]也初始为0。 -
确定遍历顺序
从递归公式上可以看出,dp[i] 依赖于 dp[i-1],所以是从前向后遍历。 -
举例推导dp数组
以 [1,2,3,0,2] 为例,dp数组如下:
最后结果是取 状态二,状态三,和状态四的最大值,不少同学会把状态四忘了,状态四是冷冻期,最后一天如果是冷冻期也可能是最大值。
方法一、 动态规划未优化代码
C++代码
class Solution {
public:
int maxProfit(vector<int>& prices) {
vector<vector<int>>dp(prices.size(), vector<int>(4, 0));
//dp[i][j]
//j : 0. 持有股票 1. 保持卖出股票 2. 当天卖出股票 3. 冷冻期
dp[0][0] = - prices[0];
for(int i = 1; i < prices.size(); i++){
dp[i][0] = max(dp[i - 1][0], max(dp[i - 1][1] - prices[i], dp[i - 1][3] - prices[i]));
dp[i][1] = max(dp[i - 1][1], dp[i - 1][3]);
dp[i][2] = dp[i - 1][0] + prices[i];
dp[i][3] = dp[i - 1][2];
}
return max(dp[prices.size() - 1][1], max(dp[prices.size() - 1][2], dp[prices.size() - 1][3]));
}
};
方法二、 动态规划优化代码
从递推公式可以看出,dp[i]只是依赖于dp[i - 1]的状态。
那么我们只需要记录 当前天的dp状态和前一天的dp状态就可以了,可以使用滚动数组来节省空间,代码如下:
C++代码
class Solution {
public:
int maxProfit(vector<int>& prices) {
vector<vector<int>>dp(2, vector<int>(4, 0));
//dp[i][j]
//j : 0. 持有股票 1. 保持卖出股票 2. 当天卖出股票 3. 冷冻期
dp[0][0] = - prices[0];
for(int i = 1; i < prices.size(); i++){
dp[i % 2][0] = max(dp[(i - 1) % 2][0], max(dp[(i - 1) % 2][1] - prices[i], dp[(i - 1) % 2][3] - prices[i]));
dp[i % 2][1] = max(dp[(i - 1) % 2][1], dp[(i - 1) % 2][3]);
dp[i % 2][2] = dp[(i - 1) % 2][0] + prices[i];
dp[i % 2][3] = dp[(i - 1) % 2][2];
}
return max(dp[(prices.size() - 1) % 2][1], max(dp[(prices.size() - 1) % 2][2], dp[(prices.size() - 1) % 2][3]));
}
};
总结
动态规划
英文:Dynamic Programming,简称DP,如果某一问题有很多重叠子问题,使用动态规划是最有效的。
动态规划中每一个状态一定是由上一个状态推导出来的,这一点就区分于贪心,贪心没有状态推导,而是从局部直接选最优的
对于动态规划问题,可以拆解为如下五步曲,这五步都搞清楚了,才能说把动态规划真的掌握了!
- 确定dp数组(dp table)以及下标的含义
- 确定递推公式
- dp数组如何初始化
- 确定遍历顺序
- 举例推导dp数组
这篇文章主要总结了一些动态规划解决309. 最佳买卖股票时机含冷冻期问题,依然是使用动规五部曲,做每道动态规划题目这五步都要弄清楚才能更清楚的理解题目!
在买卖股票的最佳时机问题的整个系列题目中使用贪心算法仅仅可以解决某个具体场景的问题,但是并不通用,而动态规划思想解决买卖股票的最佳时机整个系列问题是通用连续递进的,最好掌握一下,并且最后给出了使用滚动数组优化空间复杂度的代码!
欢迎大家关注本人公众号:编程复盘与思考随笔
(关注后可以免费获得本人在csdn发布的资源源码)