基于FPGA的图像sobel边缘提取算法开发,包括tb测试文件以及matlab验证代码

news2024/11/28 11:54:03

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

5.算法完整程序工程


1.算法运行效果图预览

2.算法运行软件版本

vivado2019.2

matlab2022a

3.部分核心程序

`timescale 1ns / 1ps
//
// Company: 
// Engineer: 
// 
// Create Date: 2023/07/31
// Design Name: 
// Module Name: sobel
// Project Name: 
// Target Devices: 
// Tool Versions: 
// Description: 
// 
// Dependencies: 
// 
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
// 
//


module tops(
input i_clk,
input i_rst,
input[7:0]i_I,
output reg[7:0]o_sobel
);
    
parameter LEN = 256;  
parameter th  = 255;      

........................................................

 
   
 
reg signed[10:0]x1;
reg signed[10:0]x2;

reg signed[10:0]y1;
reg signed[10:0]y2;

reg signed[11:0]x12;
reg signed[11:0]y12;

reg signed[11:0]x_;  
reg signed[11:0]y_;  
  
reg signed[12:0]edge_;  

always @(posedge i_clk or posedge i_rst)
begin
     if(i_rst)
     begin
     x1 <=11'd0;
     x2 <=11'd0;

     y1 <=11'd0;
     y2 <=11'd0;

     x12<=12'd0;
     y12<=12'd0;

     x_<=11'd0;
     y_<=11'd0;
  
     edge_ <=13'd0;
     end
else begin
.........................................................
  
     edge_<= x_ +  y_;  // 计算Sobel算子响应的绝对值和
     end
end 
    
    
    
always @(posedge i_clk or posedge i_rst)
begin
     if(i_rst)
     begin
     o_sobel <= 8'd0;
     end
else begin

          if(edge_>=th) //判断绝对值和是否大于阈值
          o_sobel <= 8'd255;
          else
          o_sobel <= 8'd0; 
 
     end
end  
    
    
endmodule
0X_001m

4.算法理论概述

        图像边缘检测大幅度地减少了数据量,并且剔除了可以认为不相关的信息,保留了图像重要的结构属性。有许多方法用于边缘检测,它们的绝大部分可以划分为两类:基于查找一类和基于零穿越的一类。基于查找的方法通过寻找图像一阶导数中的最大和最小值来检测边界,通常是将边界定位在梯度最大的方向。基于零穿越的方法通过寻找图像二阶导数零穿越来寻找边界,通常是Laplacian过零点或者非线性差分表示的过零点。

       Soble边缘检测算法比较简,实际应用中效率比canny边缘检测效率要高,但是边缘不如Canny检测的准确,但是很多实际应用的场合,sobel边缘却是首选,尤其是对效率要求较高,而对细纹理不太关心的时候。Soble边缘检测通常带有方向性,可以只检测竖直边缘或垂直边缘或都检测。所以我们先定义两个梯度方向的系数:

        然后我们来计算梯度图像,我们知道边缘点其实就是图像中灰度跳变剧烈的点,所以先计算梯度图像,然后将梯度图像中较亮的那一部分提取出来就是简单的边缘部分。

        Sobel算子用了一个3*3的滤波器来对图像进行滤波从而得到梯度图像,这里面不再详细描述怎样进行滤波及它们的意义等。

竖起方向的滤波器:y_mask=op = [-1 -2 -1;0 0 0;1 2 1]/8;

水平方向的滤波器:op的转置:x_mask=op’;

定义好滤波器后,我们就开始分别求垂直和竖起方向上的梯度图像。用滤波器与图像进行卷积即可:

bx = abs(filter2(x_mask,a)); 
by = abs(filter2(y_mask,a));

上面bx为水平方向上的梯度图像,by为垂直方向上的梯度图像。为了更清楚的说明算法过程,下面给出一张示例图像的梯度图像。

5.算法完整程序工程

OOOOO

OOO

O

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/952163.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

(一)KITTI数据集用于3D目标检测

KITTI数据集介绍 数据基本情况 KITTI是德国卡尔斯鲁厄科技学院和丰田芝加哥研究院开源的数据集,最早发布于2012年03月20号。 对应的论文Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite发表在CVPR2012上。 KITTI数据集搜集自德国卡尔斯鲁厄市&…

QT基础教程之九Qt文件系统

QT基础教程之九Qt文件系统 文件操作是应用程序必不可少的部分。Qt 作为一个通用开发库&#xff0c;提供了跨平台的文件操作能力。Qt 通过QIODevice提供了对 I/O 设备的抽象&#xff0c;这些设备具有读写字节块的能力。下面是 I/O 设备的类图&#xff08;Qt5&#xff09;&#…

Leetcode Top 100 Liked Questions(序号105~139)

105. Construct Binary Tree from Preorder and Inorder Traversal105. Construct Binary Tree from Preorder and Inorder Traversal 题意&#xff1a;根据前序遍历和中序遍历来构造二叉树 我的思路 要用递归造树&#xff0c;要同时递归左子树和右子树&#xff0c;造树需要…

Ansible学习笔记9

yum_repository模块&#xff1a; yum_repository模块用于配置yum仓库的。 测试下&#xff1a; [rootlocalhost ~]# ansible group1 -m yum_repository -a "namelocal descriptionlocalyum baseurlfile:///mnt/ enabledyes gpgcheckno" 192.168.17.106 | CHANGED &g…

【微服务部署】08-监控与告警

文章目录 1. PrometheusOperator1.1 优势1.2 配置脚本1.3 部署脚本 2. Granfana实现监控看板2.1 Granfana核心特性2.2 部署文件 目前Kubernetes中最流行的监控解决方案是使用Prometheus和AlertManager 1. PrometheusOperator 1.1 优势 自动化安装将配置资源化灵活的扩展能力 …

2023开学季《乡村振兴战略下传统村落文化旅游设计》许少辉博士八一新书已被北京收录

2023开学季《乡村振兴战略下传统村落文化旅游设计》许少辉博士八一新书已被北京收录

【AI】数学基础——数理统计(假设检验数据处理)

概率论 数理统计&#xff08;概念&参数估计&#xff09; 文章目录 3.8 假设检验3.8.1 提出假设3.8.2 构建检验统计量对均值检验对方差检验 3.8.3 根据显著性水平确定拒绝域临界值显著性水平拒绝域 3.8.4 计算统计量&#xff0c;确定P值3.8.5 根据临界值法决定是否拒绝原假设…

PCD点云文件外部框框坐标计算

PCD点云文件直接提取的是点云的坐标&#xff0c;不是最外面的box的坐标&#xff0c;因此可以通过&#xff1a; max_b octree.get_max_bound() min_b octree.get_min_bound()分别得到最大最小的xyz坐标&#xff0c;之后进行计算 点的序号和位置对应如下&#xff1a; 所有的…

UML用例图三种关系(重点)-架构真题(十七)

某项目包括A、B、C、D四道工序&#xff0c;各道工序之间的衔接关系、正常进度下各工序所需的时间和直接费用、赶工进度下所需的时间和直接费用如下表所示。该项目每天需要间接费用为4.5万元&#xff0c;根据此表&#xff0c;最低成本完成需要&#xff08;&#xff09;天。&…

selenium可以编写自动化测试脚本吗?

Selenium可以用于编写自动化测试脚本&#xff0c;它提供了许多工具和API&#xff0c;可以与浏览器交互&#xff0c;模拟用户操作&#xff0c;检查网页的各个方面。下面是一些步骤&#xff0c;可以帮助你编写Selenium自动化测试脚本。 1、安装Selenium库和浏览器驱动程序 首先…

【QT】使用qml的QtWebEngine遇到的一些问题总结

在使用qt官方的一些QML的QtWebEngine相关的例程的时候&#xff0c;有时在运行会报如下错误&#xff1a; WebEngineContext used before QtWebEngine::initialize() or OpenGL context creation failed 这个问题在main函数里面最前面加上&#xff1a; QCoreApplication::setAttr…

深度学习推荐系统(二)Deep Crossing及其在Criteo数据集上的应用

深度学习推荐系统(二)Deep Crossing及其在Criteo数据集上的应用 在2016年&#xff0c; 随着微软的Deep Crossing&#xff0c; 谷歌的Wide&Deep以及FNN、PNN等一大批优秀的深度学习模型被提出&#xff0c; 推荐系统全面进入了深度学习时代&#xff0c; 时至今日&#xff0c…

【数据分享】2000-2020年全球人类足迹数据(无需转发\免费获取)

人类足迹(Human Footprint)是生态过程和自然景观变化对生态环境造成的压力&#xff0c;是世界各国对生物多样性和生态保护的关注重点。那如何才能获取长时间跨度的人类足迹时空数据呢&#xff1f; 之前我们分享了来自于中国农业大学土地科学与技术学院的城市环境监测及建模&am…

实时语义分割网络 BiSeNet , RK1126 Npu 推理

记录下在rk1126上&#xff0c;实现 BiSeNet 网络推理. https://github.com/CoinCheung/BiSeNet ONNX 生成 onnx 模型 python tools/export_onnx.py --config configs/bisenetv2_city.py --weight-path ./checkpoints/model_final_v2_city.pth --outpath ./checkpoints/mode…

每日一题(反转链表)

每日一题&#xff08;反转链表&#xff09; 206. 反转链表 - 力扣&#xff08;LeetCode&#xff09; 思路&#xff1a; 可以定义一个新的newhead结构体指针。再定义cur指针和next指针互相配合&#xff0c;将原链表中的节点从头到尾依次头插到newhead链表中&#xff0c;同时更…

使用爬虫代码获得深度学习目标检测或者语义分割中的图片。

问题描述&#xff1a;目标检测或者图像分割需要大量的数据&#xff0c;如果手动从网上找的话会比较慢&#xff0c;这时候&#xff0c;我们可以从网上爬虫下来&#xff0c;然后自己筛选即可。 代码如下&#xff08;不要忘记安装代码依赖的库&#xff09;&#xff1a; # -*- co…

记一次特殊的HTTP 500.30

此错误比较常见&#xff0c;网上的解决方式各种各样&#xff0c;今天遇到的情况是&#xff0c;除过配置文件别的程序集都一样&#xff0c;程序部署端口不同&#xff0c;最后检查原因竟然是appsettings配置文件 key值的格式问题&#xff08;中英文字符或者空格导致&#xff0c;粘…

【两周学会FPGA】从0到1学习紫光同创FPGA开发|盘古PGL22G开发板学习之键控流水灯(三)

本原创教程由深圳市小眼睛科技有限公司创作&#xff0c;版权归本公司所有&#xff0c;如需转载&#xff0c;需授权并注明出处 适用于板卡型号&#xff1a; 紫光同创PGL22G开发平台&#xff08;盘古22K&#xff09; 一&#xff1a;盘古22K开发板&#xff08;紫光同创PGL22G开发…

Java8实战-总结17

Java8实战-总结17 引入流流操作中间操作终端操作使用流 小结 引入流 流操作 java.util.stream.Stream中的Stream接口定义了许多操作。它们可以分为两大类。再来看一下前面的例子&#xff1a; List<String> names menu.stream() //从菜单获得流 .filter(d -> d.get…

基于Java的OA办公管理系统,Spring Boot框架,vue技术,mysql数据库,前台+后台,完美运行,有一万一千字论文。

基于Java的OA办公管理系统&#xff0c;Spring Boot框架&#xff0c;vue技术&#xff0c;mysql数据库&#xff0c;前台后台&#xff0c;完美运行&#xff0c;有一万一千字论文。 系统中的功能模块主要是实现管理员和员工的管理&#xff1b; 管理员&#xff1a;个人中心、普通员工…