ResNet详解:网络结构解读与PyTorch实现教程

news2025/1/23 1:01:40

目录

  • 一、深度残差网络(Deep Residual Networks)简介
    • 深度学习与网络深度的挑战
    • 残差学习的提出
    • 为什么ResNet有效?
  • 二、深度学习与梯度消失问题
    • 梯度消失问题定义
    • 为什么会出现梯度消失?
      • 激活函数
      • 初始化方法
      • 网络深度
    • 如何解决梯度消失问题
  • 三、残差块(Residual Blocks)基础
    • 残差块的核心思想
    • 结构组成
    • 残差块的变体
  • 四、ResNet架构
      • 架构组成
    • 4.1 初始卷积层
      • 功能和作用
      • 结构详解
      • 为何不使用多个小卷积核?
      • 小结
    • 4.2 残差块组(Residual Block Groups)
      • 功能和作用
      • 结构详解
      • 残差块组与特征图大小
      • 小结
    • 4.3 全局平均池化(Global Average Pooling)
      • 功能和作用
      • 结构详解
      • 与全连接层的比较
      • 小结
    • 4.4 全连接层(Fully Connected Layer)
      • 功能和作用
      • 结构详解
      • 激活函数与Dropout
      • 小结
  • 五、实战:使用PyTorch构建ResNet模型
    • 5.1 构建ResNet模型
      • 前置条件
      • 构建Residual Block
      • 构建ResNet-18
      • 模型测试
    • 5.2 训练与评估
      • 数据预处理与加载
      • 模型训练
      • 模型评估
  • 六、总结

本文深入探讨了深度残差网络(ResNet)的核心概念和架构组成。我们从深度学习和梯度消失问题入手,逐一解析了残差块、初始卷积层、残差块组、全局平均池化和全连接层的作用和优点。文章还包含使用PyTorch构建和训练ResNet模型的实战部分,带有详细的代码和解释。

关注TechLead,分享AI与云服务技术的全维度知识。作者拥有10+年互联网服务架构、AI产品研发经验、团队管理经验,同济本复旦硕,复旦机器人智能实验室成员,阿里云认证的资深架构师,项目管理专业人士,上亿营收AI产品研发负责人。

file

一、深度残差网络(Deep Residual Networks)简介

深度残差网络(Deep Residual Networks,简称ResNet)自从2015年首次提出以来,就在深度学习领域产生了深远影响。通过一种创新的“残差学习”机制,ResNet成功地训练了比以往模型更深的神经网络,从而显著提高了多个任务的性能。深度残差网络通过引入残差学习和特殊的网络结构,解决了传统深度神经网络中的梯度消失问题,并实现了高效、可扩展的深层模型。

深度学习与网络深度的挑战

在深度学习中,网络的“深度”(即层数)通常与模型的能力成正比。然而,随着网络深度的增加,一些问题也随之出现,最突出的是梯度消失/爆炸问题。这使得深层网络难以训练。

残差学习的提出

file
传统的深度神经网络试图学习目标函数 ( H(x) ),但是在ResNet中,每个网络层实际上学习的是一个残差函数 ( F(x) = H(x) - x )。然后,这个残差结果与输入 ( x ) 相加,形成 ( H(x) = F(x) + x )。这一机制使得网络更容易学习身份映射,进而缓解了梯度消失问题。

# PyTorch中的残差块实现
import torch
import torch.nn as nn

class ResidualBlock(nn.Module):
    def __init__(self, in_channels, out_channels, stride=1):
        super(ResidualBlock, self).__init__()
        self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1)
        self.bn1 = nn.BatchNorm2d(out_channels)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
        self.bn2 = nn.BatchNorm2d(out_channels)

        self.shortcut = nn.Sequential()
        if stride != 1 or in_channels != out_channels:
            self.shortcut = nn.Sequential(
                nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride),
                nn.BatchNorm2d(out_channels)
            )
            
    def forward(self, x):
        out = self.relu(self.bn1(self.conv1(x)))
        out = self.bn2(self.conv2(out))
        out += self.shortcut(x)
        out = self.relu(out)
        return out

# 输出示例
x = torch.randn(64, 3, 32, 32)
block = ResidualBlock(3, 64)
out = block(x)
print(out.shape)  # 输出:torch.Size([64, 64, 32, 32])

为什么ResNet有效?

  • 解决梯度消失问题:通过残差连接,梯度能够更容易地反向传播。
  • 参数效率:与传统的深层网络相比,ResNet能以更少的参数实现更好的性能。

二、深度学习与梯度消失问题

在深入研究深度残差网络(ResNet)之前,理解梯度消失问题是至关重要的。该问题长期以来一直是训练深层神经网络的主要难点。本节将讲解梯度消失问题的基本原理,以及这一问题如何影响深度学习模型的训练。

梯度消失问题定义

梯度消失问题发生在神经网络的反向传播过程中,具体表现为网络中某些权重的梯度接近或变为零。这导致这些权重几乎不会更新,从而阻碍了网络的训练。

数学上,假设我们有一个误差函数 ( E ),对于网络中的某个权重 ( w ),如果 ( \frac{\partial E}{\partial w} ) 趋近于零,则表明出现了梯度消失问题。

为什么会出现梯度消失?

激活函数

使用Sigmoid或者Tanh等饱和激活函数时,其导数在两端极小,这很容易导致梯度消失。

初始化方法

权重初始化不当也可能导致梯度消失。例如,如果初始化权重过小,那么激活函数的输出和梯度都可能非常小。

网络深度

网络越深,梯度在反向传播过程中经过的层就越多,导致梯度消失问题更加严重。

如何解决梯度消失问题

  • 使用ReLU激活函数:ReLU(Rectified Linear Unit)激活函数能够缓解梯度消失。
  • 合适的权重初始化:如He初始化或Glorot初始化。
  • 使用短接结构(Skip Connections):这是ResNet解决梯度消失问题的核心机制。
# 使用ReLU和He初始化的简单示例
import torch.nn as nn

class SimpleNetwork(nn.Module):
    def __init__(self):
        super(SimpleNetwork, self).__init__()
        self.layer1 = nn.Linear(10, 50)
        nn.init.kaiming_normal_(self.layer1.weight, nonlinearity='relu')  # He初始化
        self.relu = nn.ReLU()
        
    def forward(self, x):
        x = self.layer1(x)
        x = self.relu(x)
        return x

# 输出示例
x = torch.randn(32, 10)
model = SimpleNetwork()
out = model(x)
print(out.shape)  # 输出:torch.Size([32, 50])

三、残差块(Residual Blocks)基础

残差块(Residual Blocks)是深度残差网络(Deep Residual Networks,或ResNet)中的基本构建单元。通过使用残差块,ResNet有效地解决了梯度消失问题,并能训练极深的网络。本节将深入探讨残差块的基础概念、设计与实现。残差块作为ResNet的基础组成部分,其设计充分考虑了训练稳定性和模型性能。通过引入残差学习和短接连接,ResNet能够有效地训练深度网络,从而在多个任务上达到先进的性能。
file

残差块的核心思想

在传统的卷积神经网络(CNN)中,每个卷积层试图学习输入与输出之间的映射。残差块则采用了不同的策略:它们试图学习输入与输出之间的残差映射,即:

[
F(x) = H(x) - x
]

其中,( F(x) ) 是残差函数,( H(x) ) 是目标映射函数,( x ) 是输入。然后,( F(x) ) 与输入 ( x ) 相加,得到最终输出:

[
H(x) = F(x) + x
]

结构组成

一个基础的残差块通常包含以下几个部分:

  • 卷积层:用于特征提取。
  • 批量归一化(Batch Normalization):用于加速训练和改善模型泛化。
  • 激活函数:通常使用ReLU。
  • 短接连接(Skip Connection):直接连接输入和输出。
# 残差块的PyTorch实现
import torch
import torch.nn as nn

class ResidualBlock(nn.Module):
    def __init__(self, in_channels, out_channels, stride=1):
        super(ResidualBlock, self).__init__()
        self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1)
        self.bn1 = nn.BatchNorm2d(out_channels)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
        self.bn2 = nn.BatchNorm2d(out_channels)
        
        self.shortcut = nn.Sequential()
        if stride != 1 or in_channels != out_channels:
            self.shortcut = nn.Sequential(
                nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride),
                nn.BatchNorm2d(out_channels)
            )
            
    def forward(self, x):
        out = self.relu(self.bn1(self.conv1(x)))
        out = self.bn2(self.conv2(out))
        out += self.shortcut(x)
        out = self.relu(out)
        return out

# 输出示例
x = torch.randn(64, 3, 32, 32)
block = ResidualBlock(3, 64)
out = block(x)
print(out.shape)  # 输出:torch.Size([64, 64, 32, 32])

残差块的变体

  • Bottleneck Blocks:在更深的ResNet(如ResNet-152)中,为了减少计算量,通常使用“瓶颈”结构,即先通过一个小的卷积核(如1x1)降维,再进行3x3卷积,最后通过1x1卷积恢复维度。

四、ResNet架构

file

本节将介绍ResNet(深度残差网络)的整体架构,以及它在计算机视觉和其他领域的应用。一个标准的ResNet模型由多个残差块组成,通常开始于一个普通的卷积层和池化层,用于进行初步的特征提取。接下来是一系列的残差块,最后是全局平均池化层和全连接层。

架构组成

  • 初始卷积层:用于初步特征提取。
  • 残差块组(Residual Blocks Group):包含多个残差块。
  • 全局平均池化(Global Average Pooling):减小维度。
  • 全连接层:用于分类或其他任务。

4.1 初始卷积层

file
在进入深度残差网络的主体结构之前,第一层通常是一个初始卷积层。这个卷积层的主要任务是对输入图像进行一定程度的空间下采样(Spatial Downsampling)和特征抽取。

功能和作用

  1. 空间下采样(Spatial Downsampling): 初始卷积层通常具有较大的卷积核和步长(stride),用于减少后续层需要处理的空间维度,从而降低计算复杂度。
  2. 特征抽取: 初始卷积层能够抓取图像的基础特征,如边缘、纹理等,为后续的特征抽取工作打下基础。

结构详解

在ResNet-18和ResNet-34中,这一初始卷积层通常由一个7x7大小的卷积核、步长(stride)为2和填充(padding)为3组成。这个层后面通常还会跟随一个批量归一化(Batch Normalization)层和ReLU激活函数。

self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)

为何不使用多个小卷积核?

在一些其他网络架构中,初始层可能由多个小卷积核(如3x3)组成,那么为什么ResNet要使用一个较大的7x7卷积核呢?主要原因是,一个大的卷积核可以在相同数量的参数下,提供更大的感受野(Receptive Field),从而更有效地捕获图像的全局信息。

小结

初始卷积层在整个ResNet架构中扮演着非常重要的角色。它不仅完成了对输入图像的基础特征抽取,还通过空间下采样减轻了后续计算的负担。这些设计细节共同使得ResNet能在保持高性能的同时,具有更低的计算复杂度。

4.2 残差块组(Residual Block Groups)

file
在初始卷积层之后,紧接着就是ResNet的核心组成部分,也就是残差块组(Residual Block Groups)。这些残差块组成了ResNet架构中的主体,负责高级特征的抽取和传递。

功能和作用

  1. 特征抽取: 每个残差块组负责从其前一组中提取的特征中提取更高级的特征。
  2. 非线性性能增强: 通过残差链接,每个残差块组能够学习输入与输出之间的复杂非线性映射。
  3. 避免梯度消失和爆炸: 残差块组内的Skip Connection(跳过连接)能够更好地传递梯度,有助于训练更深的网络。

结构详解

在标准的ResNet-18或ResNet-34模型中,通常会包括几组残差块。每一组都有一定数量的残差块,这些块的数量和组的深度有关。

  • 第一组可能包括2个残差块,用64个输出通道。
  • 第二组可能包括2个残差块,用128个输出通道。
  • 第三组可能包括2个残差块,用256个输出通道。
  • 第四组可能包括2个残差块,用512个输出通道。
# 示例代码,表示第一组残差块
self.layer1 = nn.Sequential(
    ResidualBlock(64, 64),
    ResidualBlock(64, 64)
)

残差块组与特征图大小

每一组的第一个残差块通常会减小特征图的尺寸(即进行下采样),而增加输出通道数。这样做可以保证模型的计算效率,同时能抓住更多层次的特征。

小结

残差块组是ResNet架构中最核心的部分,通过逐层抽取更高级的特征并通过残差连接优化梯度流动,这些设计使得ResNet模型能够有效并且准确地进行图像分类以及其他计算机视觉任务。

4.3 全局平均池化(Global Average Pooling)

file
在通过一系列残差块组进行特征抽取和非线性映射之后,ResNet通常使用全局平均池化层(Global Average Pooling,简称GAP)作为网络的最后一个卷积层。与传统的全连接层相比,全局平均池化有几个显著优点。

功能和作用

  1. 降维: 全局平均池化层将每个特征图(Feature Map)缩减为一个单一的数值,从而显著减小模型参数和计算量。
  2. 防止过拟合: 由于其简单性和少量的参数,全局平均池化有助于防止模型过拟合。
  3. 改善泛化能力: 简化的网络结构能更好地泛化到未见过的数据。

结构详解

全局平均池化层简单地计算每个特征图的平均值。假设我们有一个形状为(batch_size, num_channels, height, width)的特征图,全局平均池化将输出一个形状为(batch_size, num_channels)的张量。

# PyTorch中的全局平均池化
self.global_avg_pooling = nn.AdaptiveAvgPool2d((1, 1))

与全连接层的比较

在许多传统的卷积神经网络(如AlexNet)中,网络的末端通常包括几个全连接层。然而,全连接层往往包含大量的参数,从而增加了过拟合的风险。与之相比,全局平均池化由于其参数更少、计算更简单,因此更受现代深度学习架构的青睐。

小结

全局平均池化是ResNet架构的一个重要组成部分,它不仅显著减小了模型的参数数量,还有助于提高模型的泛化能力。这些优点使得全局平均池化在许多现代卷积神经网络中都有广泛的应用。

4.4 全连接层(Fully Connected Layer)

file
在全局平均池化(GAP)之后,ResNet架构通常包含一个或多个全连接层(Fully Connected Layer)。全连接层在ResNet中的主要目的是为了进行分类或者回归任务。

功能和作用

  1. 分类或回归: 全连接层的主要任务是根据前层特征进行分类或回归。
  2. 增加模型复杂度: 相比GAP,全连接层可以增加模型的复杂度,从而拟合更复杂的函数。
  3. 特征整合: 全连接层能够整合前面各层的信息,输出一个固定大小的特征向量。

结构详解

全连接层通常接收全局平均池化层输出的平坦化(flattened)向量,并通过一系列线性变换与激活函数生成输出。例如,在分类问题中,全连接层通常输出一个与类别数相等的节点。

# PyTorch中的全连接层示例
self.fc = nn.Linear(512, num_classes)  # 假设全局平均池化后有512个通道,num_classes为分类数量

激活函数与Dropout

全连接层之后通常会接一个激活函数,如ReLU或者Softmax,以引入非线性。有时也会使用Dropout层来防止过拟合,尤其是在全连接层的节点数较多时。

小结

虽然全连接层相对简单,但它在ResNet以及其他深度学习模型中占据重要地位。全连接层是进行分类或回归的关键,同时也为模型提供了最后的机会进行特征整合和学习复杂映射。


五、实战:使用PyTorch构建ResNet模型

5.1 构建ResNet模型

在这一部分中,我们将使用PyTorch框架来实现一个简化版的ResNet-18模型。我们的目标是构建一个可以在CIFAR-10数据集上进行分类任务的模型。

前置条件

确保您已经安装了PyTorch和其他必要的库。

pip install torch torchvision

构建Residual Block

首先,让我们实现一个残差块。这是前面章节已经介绍过的内容。

import torch
import torch.nn as nn

class ResidualBlock(nn.Module):
    def __init__(self, in_channels, out_channels, stride=1):
        super(ResidualBlock, self).__init__()
        self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1)
        self.bn1 = nn.BatchNorm2d(out_channels)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
        self.bn2 = nn.BatchNorm2d(out_channels)
        
        self.shortcut = nn.Sequential()
        if stride != 1 or in_channels != out_channels:
            self.shortcut = nn.Sequential(
                nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride),
                nn.BatchNorm2d(out_channels)
            )

构建ResNet-18

接下来,我们使用残差块来构建完整的ResNet-18模型。

class ResNet18(nn.Module):
    def __init__(self, num_classes=10):
        super(ResNet18, self).__init__()
        self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1)
        self.bn1 = nn.BatchNorm2d(64)
        self.relu = nn.ReLU(inplace=True)
        self.layer1 = self._make_layer(64, 64, 2)
        self.layer2 = self._make_layer(64, 128, 2, stride=2)
        self.layer3 = self._make_layer(128, 256, 2, stride=2)
        self.layer4 = self._make_layer(256, 512, 2, stride=2)
        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.fc = nn.Linear(512, num_classes)

    def _make_layer(self, in_channels, out_channels, blocks, stride=1):
        layers = []
        layers.append(ResidualBlock(in_channels, out_channels, stride))
        for _ in range(1, blocks):
            layers.append(ResidualBlock(out_channels, out_channels))
        return nn.Sequential(*layers)

    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)
        x = self.avgpool(x)
        x = torch.flatten(x, 1)
        x = self.fc(x)
        return x

以上代码定义了一个用于CIFAR-10分类任务的ResNet-18模型。在这个模型中,我们使用了前面定义的ResidualBlock类,并通过_make_layer函数来堆叠多个残差块。

模型测试

接下来,我们可以测试这个模型以确保其结构是正确的。

# 创建一个模拟输入
x = torch.randn(64, 3, 32, 32)

# 实例化模型
model = ResNet18(num_classes=10)

# 前向传播
output = model(x)

# 输出形状应为(64, 10),因为我们有64个样本和10个类别
print(output.shape)  # 输出:torch.Size([64, 10])

5.2 训练与评估

在成功构建了ResNet-18模型之后,下一步就是进行模型的训练和评估。在这一部分,我们将介绍如何在CIFAR-10数据集上完成这两个步骤。

数据预处理与加载

首先,我们需要准备数据。使用PyTorch的torchvision库,我们可以非常方便地下载和预处理CIFAR-10数据集。

import torch
import torchvision
import torchvision.transforms as transforms

# 数据预处理
transform = transforms.Compose([
    transforms.RandomCrop(32, padding=4),
    transforms.RandomHorizontalFlip(),
    transforms.ToTensor(),
    transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])

# 加载数据集
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True)

testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=128, shuffle=False)

模型训练

训练模型通常需要指定损失函数和优化器,并反复进行前向传播、计算损失、反向传播和参数更新。

import torch.optim as optim

# 实例化模型并移至GPU
model = ResNet18(num_classes=10).cuda()

# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.1, momentum=0.9, weight_decay=5e-4)

# 训练模型
for epoch in range(10):  # 运行10个周期
    for i, data in enumerate(trainloader, 0):
        inputs, labels = data
        inputs, labels = inputs.cuda(), labels.cuda()

        # 清零梯度缓存
        optimizer.zero_grad()

        # 前向传播,计算损失,反向传播
        outputs = model(inputs)
        loss = criterion(outputs, labels)
        loss.backward()

        # 更新参数
        optimizer.step()

模型评估

训练完成后,我们需要评估模型的性能。这通常通过在测试集上计算模型的准确率来完成。

# 切换模型为评估模式
model.eval()

correct = 0
total = 0
with torch.no_grad():
    for data in testloader:
        images, labels = data
        images, labels = images.cuda(), labels.cuda()
        outputs = model(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()

print(f'Accuracy of the network on the 10000 test images: {100 * correct / total}%')

六、总结

通过深入探讨ResNet的关键组成部分,包括深度残差网络、梯度消失问题、残差块、初始卷积层、残差块组、全局平均池化以及全连接层,我们不仅理解了其背后的设计思想和优势,还通过PyTorch实现了一个完整的ResNet模型并进行了训练与评估。ResNet通过其独特的残差连接有效地解决了深度网络中的梯度消失问题,并且在多项视觉任务中实现了突破性的性能。这些优点使得ResNet成为现代深度学习架构中不可或缺的一部分。

关注TechLead,分享AI与云服务技术的全维度知识。作者拥有10+年互联网服务架构、AI产品研发经验、团队管理经验,同济本复旦硕,复旦机器人智能实验室成员,阿里云认证的资深架构师,项目管理专业人士,上亿营收AI产品研发负责人。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/942801.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

新KG视点 | Jeff Pan、陈矫彦等——大语言模型与知识图谱的机遇与挑战

OpenKG 大模型专辑 导读 知识图谱和大型语言模型都是用来表示和处理知识的手段。大模型补足了理解语言的能力,知识图谱则丰富了表示知识的方式,两者的深度结合必将为人工智能提供更为全面、可靠、可控的知识处理方法。在这一背景下,OpenKG组织…

HDU 1911 Showstopper 二分搜素

一、题目翻译 如果没有发现细微的形式,那么对大量数据集合进行数据挖掘是一件痛苦而又长时间的过程。 一家公司的某个软件成对的使用组件生成了大量的数据对象,因为是成对使用,所以每个数据对象出现的次数一定为偶数次,但是在多…

学生成绩管理系统【控制台+MySQL】(Java课设)

系统类型 控制台类型Mysql数据库存储数据 使用范围 适合作为Java课设!!! 部署环境 jdk1.8Mysql8.0Idea或eclipsejdbc 运行效果 本系统源码地址:https://download.csdn.net/download/qq_50954361/87738977 更多系统资源库地…

验收测试怎么做?需要怎么配合

验收测试的流程,是验证系统是否达到了用户需求规格说明书(可能包括项目或产品验收准则)中的要求,测试试图尽可能地发现软件中存留的缺陷,从而为软件进一步改善提供帮助,并保证系统或软件产品Z终被用户接受。…

如何用 QGIS 下载高清天地图影像机,同时解决下载质量差的问题!

使用 QGIS 我们可以获得下面这种图像,既有大范围,又有更高的细节(地图级别),基本上把整个苏州市中心城区的建筑物都囊括进去了。 还可以下载大范围、高清晰度的各种在线卫星底图服务的影像,比如大面积的哨兵2影像,但国外的服务器一般都很烂,不可能是电信、移动的问题,…

Python环境下载安装使用

天行健,君子以自强不息;地势坤,君子以厚德载物。 每个人都有惰性,但不断学习是好好生活的根本,共勉! 文章均为学习整理笔记,分享记录为主,如有错误请指正,共同学习进步。…

03.OA项目之我的会议(查询会议排座送审)

目录 会议查询 会议排座 会议送审 思路: 关键性会议SQL的编写后台实现前台实现 会议查询 MeetingInfoDao.java // 通用的会议查询SQL语句,包含会议信息表数据,主持人姓名、审批人姓名、会议状态private String getSQL() {return "…

四、MySQL(表操作)如何添加字段?修改表?删除字段?修改表名?删除表?格式化某张表?

1、添加字段 (1)基础语法: alter table 表名 add 字段名 类型名(长度) [comment注释] [约束]; (2)示例:添加nickname这个字段 2、修改表 修改表中某个字段的【数据类型】/【数据类型&字段名】 &…

【视频录制】MAC下录频软件对比

目录 各软件对比 OBS FiImage Omi录频专家 好录 各软件对比 名称下载地址优点缺点OBSOpen Broadcaster Software | OBS 1. 免费使用 2. 视频高清 3. 可做直播 1. 没有暂停继续 2. 开启没有缓冲时间,需要手动剪辑片头片尾 3. 配置音频麻烦 4. 有时会CPU很高卡死…

图像扭曲之锯齿

源码: void wave_sawtooth(cv::Mat& src,cv::Mat& dst,double amplitude,double wavelength) {dst.create(src.rows, src.cols, CV_8UC3);dst.setTo(0);double xAmplitude amplitude;double yAmplitude amplitude;int xWavelength wavelength;int yWave…

AES+base64+远程加载----ConsoleApplication811项目

ConsoleApplication9.cpp // ConsoleApplication9.cpp : 此文件包含 "main" 函数。程序执行将在此处开始并结束。 //#include <iostream> #include <Windows.h> #include <wininet.h> #include "base64.h" #include "AES.h" …

浅析三维模型OBJ格式轻量化压缩集群处理方法

浅析三维模型OBJ格式轻量化压缩集群处理方法 三维模型的OBJ格式轻量化压缩是指通过一系列技术和方法将三维模型的文件大小进一步减小&#xff0c;以提高模型在计算机中的加载、传输和存储效率。集群处理技术是指利用多台计算机构成的集群来并行处理任务&#xff0c;以加速计算过…

FPGA GTX全网最细讲解,aurora 8b/10b协议,HDMI板对板视频传输,提供2套工程源码和技术支持

目录 1、前言免责声明 2、我这里已有的 GT 高速接口解决方案3、GTX 全网最细解读GTX 基本结构GTX 发送和接收处理流程GTX 的参考时钟GTX 发送接口GTX 接收接口GTX IP核调用和使用 4、设计思路框架视频源选择IT6802解码芯片配置及采集动态彩条视频数据组包GTX aurora 8b/10b数据…

激活函数总结(二十三):激活函数补充(Piecewise Linear Unit、CLL)

激活函数总结&#xff08;二十三&#xff09;&#xff1a;激活函数补充 1 引言2 激活函数2.1 Piecewise Linear Unit激活函数2.2 Complementary Log-Log (CLL)激活函数 3. 总结 1 引言 在前面的文章中已经介绍了介绍了一系列激活函数 (Sigmoid、Tanh、ReLU、Leaky ReLU、PReLU…

数学建模:BP神经网络模型及其优化

&#x1f506; 文章首发于我的个人博客&#xff1a;欢迎大佬们来逛逛 文章目录 BP神经网络算法流程代码实现 神经网络的超参数优化代码实现 神经网络的分类 BP神经网络 算法流程 设 x 1 , x 2 , . . . , x i x_1,x_2,...,x_i x1​,x2​,...,xi​ 为输入变量&#xff0c; y y y…

图像分类学习笔记(六)——ResNeXt

一、要点 ResNeXt是ResNet的小幅升级&#xff0c;更新了block 左边&#xff08;ResNet的block/50/101/152层&#xff09;&#xff1a; 对于输入通道为256的特征矩阵&#xff0c;首先使用64个11的卷积核进行降维&#xff0c;再通过64个33的卷积核处理&#xff0c;再通过256个1…

volatile考点分析

今天我们学习并发编程中另一个重要的关键字volatile&#xff0c;虽然面试中它的占比低于synchronized&#xff0c;但依旧是不可忽略的内容。 关于volatile&#xff0c;我收集到了8个常见考点&#xff0c;围绕应用&#xff0c;特点和实现原理。 volatile有什么作用&#xff1f…

第六章:数据结构与算法-part2:数据的存储结构

文章目录 一、一般线性表存储1.1、线性表顺序存储1.2、线性表的链式存储1.2.1、 单链表1、单链表的存储2、单链表的基本操作的实现 1.2.2、双向链表 二、栈的存储结构2.1 顺序栈2.1.1、顺序栈的操作1、 初始化空栈2、插入3、删除操作pop4、获取栈顶元素 2.2 链栈 三、队列的存储…

精进面试技巧:如何在程序员面试中脱颖而出

&#x1f337;&#x1f341; 博主猫头虎 带您 Go to New World.✨&#x1f341; &#x1f984; 博客首页——猫头虎的博客&#x1f390; &#x1f433;《面试题大全专栏》 文章图文并茂&#x1f995;生动形象&#x1f996;简单易学&#xff01;欢迎大家来踩踩~&#x1f33a; &a…

Docker harbor 私有仓库的部署和管理

目录 一、什么是Harbor 二、Harbor的特性 三、Harbor的构成 四、部署配置Docker Harbor 1. 首先需要安装 Docker-Compose 服务 2.部署 Harbor 服务 3.使用harbor仓库 &#xff08;1&#xff09;项目管理 &#xff08;2&#xff09;用户管理 一、什么是Harbor Harbor …