新KG视点 | Jeff Pan、陈矫彦等——大语言模型与知识图谱的机遇与挑战

news2025/1/23 0:58:40

OpenKG

af6f0fbfaa2cbd677f910dc3180ebf8a.png

大模型专辑

导读 知识图谱和大型语言模型都是用来表示和处理知识的手段。大模型补足了理解语言的能力,知识图谱则丰富了表示知识的方式,两者的深度结合必将为人工智能提供更为全面、可靠、可控的知识处理方法。在这一背景下,OpenKG组织新KG视点系列文章——“大模型专辑”,不定期邀请业内专家对知识图谱与大模型的融合之道展开深入探讨。本期邀请到爱丁堡大学Jeff Pan教授、曼彻斯特大学陈矫彦研究员、浙江大学张文研究员、山西大学闫智超博士等分享的综述论文:“大语言模型与知识图谱的机遇与挑战”。

31b663cbf624e1f43618824f8a970623.png

ae34b6215eb15227dd801fb3b11e951f.png

文章作者 | Jeff Pan(爱丁堡大学终身教授)、陈矫彦(曼彻斯特大学)、张文(浙江大学)、闫智超(山西大学)等

笔记整理 | 邓鸿杰

内容审定 | 陈华钧

论文链接 | https://arxiv.org/abs/2308.06374


01

引言

大语言模型(Large Language Models, LLMs)已经席卷了知识表示(Knowledge Representation, KR)和整个世界,并且在一些自然语言处理任务上达到了和人类相媲美的性能。基于此,人们逐渐接受了这种存在于大语言模型中“参数化”的知识,也宣告了知识计算时代的到来。知识计算时代,KR中的推理任务被扩展为基于知识表示的知识计算任务。

这是知识表示领域迈出的一大步。长期以来,学者们将研究重点放在显式知识上,包括非结构化知识,如文本,和结构化知识,如知识图谱(Knowledge Graphs, KGs)。尤其是在二十一世纪初期RDF和OWL两个标准的出现,使得知识图谱成为一种主流的大规模知识库,同时支持基于逻辑的图推理和基于图的学习。

大语言模型作为知识表示的一个发展拐点,将研究人员的目光从显示知识转向到了显示知识和参数化知识混合的方法上。作为显示知识代表的知识图谱,在参数化的语言模型背景下受到了广泛的研究,包括使用知识图谱增强BERT、RoBERTa,以及最近出现的生成式语言模型GPT等。相反,使用大语言模型反向去构造和完善知识图谱也进行了大量的探索,如使用大语言模型来进行知识图谱的补全。

本文深度地探讨了大语言模型出现后,在知识表示从显示表示迈向混合表示的过程中有争议的一些话题,并介绍了知识图谱和大语言模型结合的最新技术以及未来的机遇与挑战。

02

普遍争议的主题

显式知识和“参数”知识的结合使用在知识计算领域引起了多个讨论,本文将从支持者和怀疑者两个方面对一些共性问题进行讨论。

1.1 知识表示与推理

知识图谱提供了具有明确关系的知识的结构化表示,支持推理和推断。怀疑者认为大语言模型中“参数化”的知识是基于统计的,并不是真正的理解和推理,并且由于缺乏明确的知识表征,模型会生成看似合理但却荒谬的结果。另一方面,知识图谱和大语言模型的获得都需要极高的成本,但后者更加容易适配下游的任务,并将AI带入到了世界舞台的中央,因此参数化知识并不是大语言的唯一目标。综上,在知识表示和知识计算两个任务使用显式知识和“参数化”知识的比较中,知识表示更加偏向表达性和判定性的权衡,而知识计算更加偏向精确率和召回率之间的权衡。

1.2 高精度方法

知识图谱的成功在于其可以精确地提供关于实体的事实信息,如YAGO,可以提供95%以上的正确信息。同样知识图谱在用于生产环境时需要较高的精度,例如Google的Knowledge Vault未能成功落地也是因为其精度达不到要求的99%。目前基于BERT或GPT等的方法不能满足以上要求,这知识计算科学家仍然需要探索基于大语言模型的高精度的方法。

1.3 数值计算

人们普遍认为大语言模型需要具有处理数值的能力,对于语言模型来说,完成数值计算工作是一项具有挑战性的任务,该挑战同样适用于知识图谱补全任务。在基于Wikidata的数字事实来评估语言模型数值计算能力中,没有一个模型能准确地得到结果,尽管已有的模型在数值处理的能力上表现不俗,但考虑到数值具有不同的度量和类型,使得该任务难度进一步升级,因此,修改模型来处理数值的问题仍未被解决,以至于利用大语言模型来完成数值知识图谱的补全看起来是不现实的。

1.4 长尾知识

在知识计算任务中,存在的一个关键问题:大语言模型到底记住了多少的知识?在对大语言模型的调查过程中发现,使用Wikidata中随机的知识对模型进行测试时,模型的性能会急剧的恶化,尤其是在遇到长尾的实体时。这种情况的出现,究其原因就是在预训练过程中实体和关系出现的频率是不一样的,模型对长尾的信息是难以保持精准记忆的。相反,知识图谱在提供长尾实体的知识上具有天然的优势,因此可以进一步提升大语言模型在知识计算任务中的回忆能力。

1.5 偏见、公平等更多问题

批评者认为大语言模型会使训练数据中的偏见持续存在并放大,从而导致有偏见的输出。而支持者认为偏见不是大语言模型中所固有的特征,而是训练数据集中嵌入的社会偏见,他们强调了在训练数据中消除偏见和开发能够缓解偏见技术的重要性。知识图谱在构建过程中同样会嵌入“偏见”,并且会被运用到各种下游任务中。除了偏见和公平外,还有侵犯版权和错误信息等问题。与显式知识相比,大语言模型中“参数化”偏见知识更难以被去除或修改。

1.6 可解释性

在可解释性的场景中,知识图谱通常是首选的。对大语言模型持有怀疑态度的学者们认为:大模型是一个黑盒,缺乏可解释性,很难理解他们是如何产生结果的。但支持者们虽然承认了大模型可解释性差的问题,但却通过最近的一些研究,如注意力机制、模型内省等技术可以在一定程度提升模型的可解释性。思维链技术、问题解耦和答案归因等方法,是最近在大语言模型可解释性方法研究中的一些热点话题。

03

重点研究课题与挑战

e05df34a6118af488d9b83235567e90f.png

2.1 基于大语言模型的知识图谱技术:知识提取和规范化

实体解析与匹配

KG构建是一项复杂的任务,需要从广泛的来源收集和集成信息,包括结构化、半结构化和非结构化数据。传统的方法通常需要为不同的任务设计不同的模块进行信息的抽取与匹配,而通过大语言模型这一强力的工具,可以更方便地进行信息抽取任务。在实体解析与匹配中,大语言模型通常作为一种数据标注模块,为下游模块产生相关的训练语料。

从表格和文本数据中提取知识

从数据来源的角度来看,图谱中的实体通常来源于表格或者文本中。

其中根据在使用大语言模型提取表格数据中的一些尝试中发现,面临的挑战主要有三个:

1)将表格数据转化为序列;

2)表示和利用非文本的表格数据;

3)提取表格知识。

从文本中提取信息的方法统长包含以下4个任务:

1)命名实体识别;2)关系抽取;

3)事件抽取和;4)语义角色标注。

由于大语言模型强大的能力,使得其在小样本条件下仍有不俗的表现,但仍然存在以下的挑战:

1)从超长文本中有效的提取信息;

2)高覆盖率的信息抽取。

2.2 基于大语言模型的知识图谱技术:知识图谱的构建

链接预测

大语言模型在改善知识图谱构建中具有重要作用,本文首先讨论了链接预测任务,并转向最近的热门任务:从大语言模型中提取三元组。

除了传统的链接预测方法通常使用基于嵌入表示的方法外,还可以使用提示学习的方法,通过大语言模型进一步找到实体之间的链接。基于大语言模型的方法虽然可以很容易的进行链接预测,但仍然存在以下挑战与机遇:

1)大模型不能保证由于实体名称多样化带来的生成错误问题;

2)目前的评估方法对于大模型来说是不适用的,主要原因是计算成本太过高昂;

3)由于大语言模型是基于维基百科训练的,所以并不能知道,该结果是推理的结果还是大语言模型本身的记忆结果;

4)大语言模型在归纳链接预测任务中的作用本身是一个热门话题;

5)对于提示模板的构建是需要不断尝试的,尤其是在GPT-4这种模型背景下,完成该任务是昂贵的;

6)有效的预测策略的获取是一个有前景的研究方向;

7)大语言模型与基于嵌入的方法联合也是一个很强的研究方向。

从大语言模型中提取三元组

传统上,关系知识的检索和推理都依赖于符号知识库,最近,人们研究使用自监督的方法,如构造问答对、完形填空、提示工程等,从大语言模型中直接检索关系知识的能力。这种方法主要的挑战和机遇是:

1)由于实体名称的重复性,需要进行实体消歧;

2)由于大语言模型读长尾实体记忆的不精确性,导致产生错误的信息;

3)大语言模型面临着高精度的要求;

4)大语言模型的输出不提供出处,为核验该信息的准确性带来了信息的挑战。

2.3 基于大语言模型的知识图谱技术:本体模式的构建

从知识图谱中挖掘约束和规则

现有构建知识图谱的方法通常使用pipeline的方式,这种方法容易造成误差传播问题,通过引入自动化的规则和约束来限制构建图谱时错误信息的引入可以提升数据的质量。如何生成这些约束和规则是一个根本性的挑战,在此背景下,大语言模型带来了新的机遇:

1)从输入文本中提取上下文信息的能力;

2)在训练过程中使用上下文提取信息;

3)通过归纳推理生成新的规则。

4)理解词汇信息,协调同义词和一词多义现象;

5)提供规则的解释和生成候选以及反事实样例。

本体优化

本体优化包含很多主题:知识补全、错误知识检测和修复和知识规范化等,开发基于大语言模型的本体细化工具仍然存在以下挑战:

1)利用文本及其本体的图结构和逻辑;

2)结合符合推理和大语言模型推理。

本体对齐

单个本体的知识通常是不完整的,许多真实世界的应用通常依赖于跨领域的知识。本体对齐的主要挑战是评估基于大语言模型的本体对齐系统。

2.4 基于知识图谱的大语言模型

在大语言模型中使用知识图谱主要有以下几个方面:

1)知识图谱可以作为大语言模型的训练数据;

2)知识图谱中的三元组可以用于提示模板的构建;

3)知识图谱作为一种外部知识增强大语言模型。

基于知识图谱的语言模型(预)训练

由于自然语言文本本身可能只提供有限的信息覆盖,而知识图谱可以为语言模型提供结构化的事实知识,集成知识图谱的语言模型(预)训练方法,使得向模型注入世界知识和实时更新知识更加方便。这种融合了知识图谱信息的语言模型,在知识密集型QA任务上展示了具有竞争力的结果,证明了这种方法在提升语言模型的能力具有重要意义。

基于知识图谱的提示构建

目前使用知识图谱来丰富和微调提示模板,从而在提示的数量、质量和多样性上比手动的方法更具优势,已有方法证明了通过图谱构建的提示模板进行推理比传统方法更具竞争力,但目前该方法仍存在挑战与机遇:

1)生成上下文感知的写作提示,分析不同提示之间的关系,形成具有关联关系的提示模板。

2)动态生成和用户交互的提示模板,由于知识图谱提供了知识的透明表示,因此可以很容易地将从知识图谱生成的提示追溯到它们的底层源。

3)将知识图谱集成到提示模板中,增强模型生成内容的可行度。

4)知识图谱可以创建询问问题的提示,从而触发知识图谱复杂推理能力和中间推理步骤。

检索增强的方法

基于检索增强的方法对于大模型获取外部知识是重要的,尤其是针对长尾实体和特定领域训练中缺失的实体。目前的方法(如RAG,FiD)主要是考虑文本知识,最近也开始有方法使用图谱知识去增强大模型。在可见的未来,如果大规模知识图谱构造有比较可行的方法,图谱增强可能成为主流方案之一。检索增强是一个非常有前景的方向,主要挑战有:

1)统一知识编辑与检索增强的方法;

2)半参数化大语言模型;

3)支撑复杂推理。

04

展望

综上所述,我们总结了以下显式知识和“参数化”知识的融合的机会:

1. ­简便快捷的文本知识获取长久以来文字都是人类记录知识的主要方式,大语言模型使文本知识的获取及时可得,可以避免复杂的文本知识收集、表示、存储、和查询流程,将AI开发者从信息检索的依赖中解放出来。

2. 丰富的子任务知识:大语言模型可以简化传统知识工程流程,通过少量样本作为实例语言模型即可学会结构解析、实体识别、关系抽取等任务,因此可以快速构建大规模高质量的知识图谱。

3. 实现更好的语言理解:尽管大语言模型已经具有很好的语言理解能力,将显式知识与大语言模型中的“参数化”知识融合,有可能让模型具有更强的语言理解能力,实现更好的文本蕴含推理、文本梗概、以及一致文本生成等。

大语言模型的出现是知识图谱研究的一个重要转折点,尽管在如何结合他们的优势来进一步解决问题上仍然有待深入研究,但已经出现了令人兴奋的机会。对此,我们提出了以下建议:

1)不要因为研究范式的转变而丢弃知识图谱;

2)将你的研究方法与基于大模型的方法持续进行比较;

3)保持好奇,保持批判;

4)过去的已经过去了,让我们开始新的旅程。

以上就是本次分享的内容,谢谢。

71c0bf9b1a386873c30e2ac6dfb83912.gif

4b4ed23ac059ab5878b265f7494c7f0a.png

作者简介

INTRODUCTION

5656675a54c1d89b9261512176d6db79.gif

Jeff Pan

028784de0e8f9274806f45c9d88fac89.gif

爱丁堡大学终身教授

da91ef4ef0abaadf4ce8f08234454d32.gif

Jeff Pan教授,长江学者,爱丁堡大学终身教授,华为爱丁堡知识图谱实验室主任,华为英国首席搜索科学家,阿兰图灵研究院知识图谱主席。主页:http://knowledge-representation.org/j.z.pan/

a607596ba4d935c79154cb3bb7f1af18.png

作者简介

INTRODUCTION

e24714ff836ffd1a361da97212eac5d2.gif

陈矫彦

744951a9dd2d7fc1e5e5645db8e92719.gif

曼彻斯特大学终身制讲师

8631fe7408d7432ed17695276c8762e1.gif

陈矫彦博士,曼彻斯特大学计算机科学系终身制讲师,牛津大学计算机科学系兼职研究员。陈博士主要研究知识图谱、本体论、机器学习和神经符号人工智能,担任Transactions of Graph Data and Knowledge (TGDK)的副主编。个人主页:https://chenjiaoyan.github.io/

91e4c9e4bc4d8a25c6fcc8ad924a25ac.jpeg

作者简介

INTRODUCTION

413a0c00a546e397c83d70969a072424.gif

张文

3180c17557c03feb3d429507ba58ca30.gif

浙江大学特聘研究员

1b62420ad078a61f3258db8a14ab024a.gif

张文,浙江大学软件学院特聘研究员,研究方向为知识图谱、知识表示、知识推理。个人主页:https://person.zju.edu.cn/zhangwen

63ce2ffd3be848e1c0328cfde379aef2.jpeg

作者简介

INTRODUCTION

5b5140e97c67a20642f1f856ec628017.gif

闫智超

39d65594decd9610b4b4c3339b11b3c1.gif

山西大学博士

9fbd943767310e2d118587e62a91b60a.gif

闫智超:山西大学博士在读,主要研究方向为框架语义解析。主页:

https://scholar.google.com.hk/citations?user=Tb2o2nUAAAAJ&hl=zh-CN


OpenKG

OpenKG(中文开放知识图谱)旨在推动以中文为核心的知识图谱数据的开放、互联及众包,并促进知识图谱算法、工具及平台的开源开放。

a6afccc8ac8b56ada6f7d9b55f9ca351.png

点击阅读原文,进入 OpenKG 网站。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/942800.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

HDU 1911 Showstopper 二分搜素

一、题目翻译 如果没有发现细微的形式,那么对大量数据集合进行数据挖掘是一件痛苦而又长时间的过程。 一家公司的某个软件成对的使用组件生成了大量的数据对象,因为是成对使用,所以每个数据对象出现的次数一定为偶数次,但是在多…

学生成绩管理系统【控制台+MySQL】(Java课设)

系统类型 控制台类型Mysql数据库存储数据 使用范围 适合作为Java课设!!! 部署环境 jdk1.8Mysql8.0Idea或eclipsejdbc 运行效果 本系统源码地址:https://download.csdn.net/download/qq_50954361/87738977 更多系统资源库地…

验收测试怎么做?需要怎么配合

验收测试的流程,是验证系统是否达到了用户需求规格说明书(可能包括项目或产品验收准则)中的要求,测试试图尽可能地发现软件中存留的缺陷,从而为软件进一步改善提供帮助,并保证系统或软件产品Z终被用户接受。…

如何用 QGIS 下载高清天地图影像机,同时解决下载质量差的问题!

使用 QGIS 我们可以获得下面这种图像,既有大范围,又有更高的细节(地图级别),基本上把整个苏州市中心城区的建筑物都囊括进去了。 还可以下载大范围、高清晰度的各种在线卫星底图服务的影像,比如大面积的哨兵2影像,但国外的服务器一般都很烂,不可能是电信、移动的问题,…

Python环境下载安装使用

天行健,君子以自强不息;地势坤,君子以厚德载物。 每个人都有惰性,但不断学习是好好生活的根本,共勉! 文章均为学习整理笔记,分享记录为主,如有错误请指正,共同学习进步。…

03.OA项目之我的会议(查询会议排座送审)

目录 会议查询 会议排座 会议送审 思路: 关键性会议SQL的编写后台实现前台实现 会议查询 MeetingInfoDao.java // 通用的会议查询SQL语句,包含会议信息表数据,主持人姓名、审批人姓名、会议状态private String getSQL() {return "…

四、MySQL(表操作)如何添加字段?修改表?删除字段?修改表名?删除表?格式化某张表?

1、添加字段 (1)基础语法: alter table 表名 add 字段名 类型名(长度) [comment注释] [约束]; (2)示例:添加nickname这个字段 2、修改表 修改表中某个字段的【数据类型】/【数据类型&字段名】 &…

【视频录制】MAC下录频软件对比

目录 各软件对比 OBS FiImage Omi录频专家 好录 各软件对比 名称下载地址优点缺点OBSOpen Broadcaster Software | OBS 1. 免费使用 2. 视频高清 3. 可做直播 1. 没有暂停继续 2. 开启没有缓冲时间,需要手动剪辑片头片尾 3. 配置音频麻烦 4. 有时会CPU很高卡死…

图像扭曲之锯齿

源码: void wave_sawtooth(cv::Mat& src,cv::Mat& dst,double amplitude,double wavelength) {dst.create(src.rows, src.cols, CV_8UC3);dst.setTo(0);double xAmplitude amplitude;double yAmplitude amplitude;int xWavelength wavelength;int yWave…

AES+base64+远程加载----ConsoleApplication811项目

ConsoleApplication9.cpp // ConsoleApplication9.cpp : 此文件包含 "main" 函数。程序执行将在此处开始并结束。 //#include <iostream> #include <Windows.h> #include <wininet.h> #include "base64.h" #include "AES.h" …

浅析三维模型OBJ格式轻量化压缩集群处理方法

浅析三维模型OBJ格式轻量化压缩集群处理方法 三维模型的OBJ格式轻量化压缩是指通过一系列技术和方法将三维模型的文件大小进一步减小&#xff0c;以提高模型在计算机中的加载、传输和存储效率。集群处理技术是指利用多台计算机构成的集群来并行处理任务&#xff0c;以加速计算过…

FPGA GTX全网最细讲解,aurora 8b/10b协议,HDMI板对板视频传输,提供2套工程源码和技术支持

目录 1、前言免责声明 2、我这里已有的 GT 高速接口解决方案3、GTX 全网最细解读GTX 基本结构GTX 发送和接收处理流程GTX 的参考时钟GTX 发送接口GTX 接收接口GTX IP核调用和使用 4、设计思路框架视频源选择IT6802解码芯片配置及采集动态彩条视频数据组包GTX aurora 8b/10b数据…

激活函数总结(二十三):激活函数补充(Piecewise Linear Unit、CLL)

激活函数总结&#xff08;二十三&#xff09;&#xff1a;激活函数补充 1 引言2 激活函数2.1 Piecewise Linear Unit激活函数2.2 Complementary Log-Log (CLL)激活函数 3. 总结 1 引言 在前面的文章中已经介绍了介绍了一系列激活函数 (Sigmoid、Tanh、ReLU、Leaky ReLU、PReLU…

数学建模:BP神经网络模型及其优化

&#x1f506; 文章首发于我的个人博客&#xff1a;欢迎大佬们来逛逛 文章目录 BP神经网络算法流程代码实现 神经网络的超参数优化代码实现 神经网络的分类 BP神经网络 算法流程 设 x 1 , x 2 , . . . , x i x_1,x_2,...,x_i x1​,x2​,...,xi​ 为输入变量&#xff0c; y y y…

图像分类学习笔记(六)——ResNeXt

一、要点 ResNeXt是ResNet的小幅升级&#xff0c;更新了block 左边&#xff08;ResNet的block/50/101/152层&#xff09;&#xff1a; 对于输入通道为256的特征矩阵&#xff0c;首先使用64个11的卷积核进行降维&#xff0c;再通过64个33的卷积核处理&#xff0c;再通过256个1…

volatile考点分析

今天我们学习并发编程中另一个重要的关键字volatile&#xff0c;虽然面试中它的占比低于synchronized&#xff0c;但依旧是不可忽略的内容。 关于volatile&#xff0c;我收集到了8个常见考点&#xff0c;围绕应用&#xff0c;特点和实现原理。 volatile有什么作用&#xff1f…

第六章:数据结构与算法-part2:数据的存储结构

文章目录 一、一般线性表存储1.1、线性表顺序存储1.2、线性表的链式存储1.2.1、 单链表1、单链表的存储2、单链表的基本操作的实现 1.2.2、双向链表 二、栈的存储结构2.1 顺序栈2.1.1、顺序栈的操作1、 初始化空栈2、插入3、删除操作pop4、获取栈顶元素 2.2 链栈 三、队列的存储…

精进面试技巧:如何在程序员面试中脱颖而出

&#x1f337;&#x1f341; 博主猫头虎 带您 Go to New World.✨&#x1f341; &#x1f984; 博客首页——猫头虎的博客&#x1f390; &#x1f433;《面试题大全专栏》 文章图文并茂&#x1f995;生动形象&#x1f996;简单易学&#xff01;欢迎大家来踩踩~&#x1f33a; &a…

Docker harbor 私有仓库的部署和管理

目录 一、什么是Harbor 二、Harbor的特性 三、Harbor的构成 四、部署配置Docker Harbor 1. 首先需要安装 Docker-Compose 服务 2.部署 Harbor 服务 3.使用harbor仓库 &#xff08;1&#xff09;项目管理 &#xff08;2&#xff09;用户管理 一、什么是Harbor Harbor …

面试前的准备:程序员应该如何备战面试

&#x1f337;&#x1f341; 博主猫头虎 带您 Go to New World.✨&#x1f341; &#x1f984; 博客首页——猫头虎的博客&#x1f390; &#x1f433;《面试题大全专栏》 文章图文并茂&#x1f995;生动形象&#x1f996;简单易学&#xff01;欢迎大家来踩踩~&#x1f33a; &a…