LeetCode 周赛上分之旅 #42 当 LeetCode 考树上倍增,出题的趋势在变化吗

news2024/12/27 13:35:04

⭐️ 本文已收录到 AndroidFamily,技术和职场问题,请关注公众号 [彭旭锐] 和 BaguTree Pro 知识星球提问。

学习数据结构与算法的关键在于掌握问题背后的算法思维框架,你的思考越抽象,它能覆盖的问题域就越广,理解难度也更复杂。在这个专栏里,小彭与你分享每场 LeetCode 周赛的解题报告,一起体会上分之旅。

本文是 LeetCode 上分之旅系列的第 42 篇文章,往期回顾请移步到文章末尾~

周赛 360

T1. 距离原点最远的点(Easy)

  • 标签:模拟

T2. 找出美丽数组的最小和(Medium)

  • 标签:散列表、贪心、数学

T3. 使子序列的和等于目标的最少操作次数(Hard)

  • 标签:位运算、散列表、排序

T4. 在传球游戏中最大化函数值(Hard)

  • 标签:树、倍增、动态规划、内向基环树


T1. 距离原点最远的点(Easy)

https://leetcode.cn/problems/furthest-point-from-origin/

题解(模拟)

根据题意 “_” 既可以作为 “L” 也可以作为 “R”。容易想到,为了使得终点距离原点更远,当所有 “_” 仅作为 “L” 或 “R” 对结果的贡献是最优的,此时问题的结果就取决于 “L” 和 “R” 的差绝对值。

class Solution {
    fun furthestDistanceFromOrigin(moves: String): Int {
        return moves.count{ it == '_' } + abs(moves.count{ it == 'L' } - moves.count{ it == 'R' })
    }
}

一次遍历:

class Solution {
    fun furthestDistanceFromOrigin(moves: String): Int {
        var cntL = 0
        var cntR = 0
        for (e in moves) {
            when (e) {
                'L' -> {
                    cntL ++
                    cntR --
                }
                'R' -> {
                    cntL --
                    cntR ++
                }
                else -> {
                    cntL ++
                    cntR ++
                }
            }
        }
        return max(abs(cntL), abs(cntR))
    }
}

复杂度分析:

  • 时间复杂度: O ( n ) O(n) O(n) 线性遍历;
  • 空间复杂度: O ( 1 ) O(1) O(1) 仅使用常量级别空间。

T2. 找出美丽数组的最小和(Medium)

https://leetcode.cn/problems/find-the-minimum-possible-sum-of-a-beautiful-array/

这道题与上周周赛 359 T2 2829. k-avoiding 数组的最小总和 相比,除了数据范围之外是完全相同的,有点离谱。

题解一(散列表 + 贪心)

1 1 1 开始从小到大枚举,如果当前元素 c u r cur cur 与已选列表不冲突,则加入结果中。为了验证是否冲突,我们使用散列表在 O ( 1 ) O(1) O(1) 时间复杂度判断。

class Solution {
    fun minimumPossibleSum(n: Int, k: Int): Long {
        val set = HashSet<Int>()
        var sum = 0L
        var cur = 1
        repeat(n) {
            while (!set.isEmpty() && set.contains(k - cur)) cur++
            sum += cur
            set.add(cur)
            cur++
        }
        return sum
    }
}

复杂度分析:

  • 时间复杂度: O ( n ) O(n) O(n) 线性遍历;
  • 空间复杂度: O ( n ) O(n) O(n) 散列表空间。

题解二(数学)

这道题还可以继续挖掘数学规律,我们发现当我们从 1 1 1 开始从小到大枚举时,每选择一个数的同时必然会使得另一个数 k − x k - x kx 不可选。例如:

  • 选择 1 1 1,则 k − 1 k - 1 k1 不可选;
  • 选择 2 2 2,则 k − 2 k - 2 k2 不可选;
  • 选择 k / 2 k / 2 k/2,则 k − k / 2 k - k / 2 kk/2 不可选。

可以发现,最终选择的元素被分为两部分:

  • 小于 k k k 的部分:选择所有和为 k k k 的配对中的较小值,即 1 、 2 、 3 … k / 2 1、2、3 … k / 2 123k/2
  • 大于等于 k k k 的部分:与其他任意正整数相加都不会等于 k k k,因此大于等于 k k k 的数必然可以选择,即 k 、 k + 1 、 k + 2 、 … 、 k + n − m − 1 k、k + 1、k + 2、…、k + n - m - 1 kk+1k+2k+nm1 共 n - m 个数。

我们令 m = m i n ( k / 2 , n ) m = min(k / 2, n) m=min(k/2,n),使用求和公式可以 O ( 1 ) O(1) O(1) 求出两部分的总和:

  • 小于 k 的部分: m ( m + 1 ) / 2 m(m + 1)/ 2 m(m+1)/2
  • 大于等于 k 的部分: ( n − m ) ∗ ( 2 ∗ k + n − m − 1 ) / 2 (n - m) * (2*k + n - m - 1) / 2 (nm)(2k+nm1)/2
class Solution {
    fun minimumPossibleSum(n: Int, k: Int): Long {
        val m = 1L * Math.min(n, k / 2)
        return m * (m + 1) / 2 + (n - m) * (2 * k + n - m - 1) / 2
    }
}

复杂度分析:

  • 时间复杂度: O ( 1 ) O(1) O(1)
  • 空间复杂度: O ( 1 ) O(1) O(1)

T3. 使子序列的和等于目标的最少操作次数(Hard)

https://leetcode.cn/problems/minimum-operations-to-form-subsequence-with-target-sum/

这道题的考点不复杂,难点在模拟问题挺考验编码功底的。

问题分析

  • 关键信息: n u m s nums nums 数组中所有元素都是 2 2 2 的幂,元素顺序对结果没有影响;
  • 问题是否有解: 考虑到所有数最终都能拆分成 1 1 1,那么只要 n u m s nums nums 数组的和大于等于 t a r g e t target target 就一定有解;
# 二进制位
nums:   _ _ _ 1 _ _ _ _
target: _ _ _ _ _ 1 _ _
  • 子问题: 问题是否有解的判断不仅适用于原问题,对于仅考虑二进制位最低位 [ 0 ] [0] [0] [ k ] [k] [k] 的子问题亦是如此。

以示例 1 nums = [1,2,8], target = 7 与示例 2 nums = [1,32,1,2], target = 12 为例,我们将统计 n u m s nums nums 中不同 2 2 2 的幂的出现次数:

# 二进制位
nums:   _ _ _ _ 1 _ 1 1
target: _ _ _ _ _ 1 1 1

# 二进制位
nums:   _ _ 1 _ _ _ 1 2 # 1 出现 2 次
target: _ _ _ _ 1 1 _ _

那么当我们从右向左枚举二进制位 k k k 时,如果「 n u m s nums nums 中小于等于 2 k 2^k 2k 的元素和」 ≥ ≥ t a r g e t target target 中低于等于 k k k 位的值」,那么对于仅考虑 [ 0 , k ] [0, k] [0,k] 位上的子问题是有解的。否则,我们需要找到 n u m s nums nums 中最近大于 2 k 2^k 2k 的最近数组做拆分:

# 只考虑低 2 位,可以构造
nums:   _ _ _ _ 1 _ | 1 1
target: _ _ _ _ _ 1 | 1 1

# 只考虑低 3 位,无法构造,需要找到最近的 “1” 做拆分
nums:   _ _ _ _ 1 | _ 1 1
target: _ _ _ _ _ | 1 1 1

# 只考虑低 3 位,无法构造,需要找到最近的 “1” 做拆分
nums:   _ _ 1 _ _ | _ 1 2
target: _ _ _ _ 1 | 1 _ _

# 只考虑低 6 位,可以构造
nums:   _ _ | 1 _ _ _ 1 2
target: _ _ | _ _ 1 1 _ _

组合以上技巧:

写法一(数组模拟)

思路参考灵神的题解。

  • 首先,我们使用长为 32 32 32 的数组,计算出 n u m s nums nums 数组中每个 2 2 2 的幂的出现次数;
  • 随后,我们从低位到高位枚举二进制位 i i i,在每轮迭代中将 n u m s nums nums 数组中的 2 i 2^i 2i 元素累加到 s u m sum sum 中,此举相当于在求「低 i i i 位的子问题」可以构造的最大值;
  • 最后,我们比较 s u m sum sum 是否大于等于 t a r g e t target target(只考虑低 i i i 位),此举相当于在判断「低 i i i 位的子问题」是否可构造。如果不可构造,我们尝试寻找最近的 2 j 2^j 2j 做拆分;
  • 另外,有一个优化点:当我们拆分将 2 j 2^j 2j 拆分到 2 i ( j > i ) 2^i (j > i) 2i(j>i) 时并不是直接丢弃 2 j 2^j 2j,而是会留下 2 j − 1 、 2 j − 2 … 2 i 2^{j-1}、2^{j-2}… 2^i 2j12j22i 等一系列数,可以直接跳到第 j j j 位继续枚举。

注意一个容易 WA 的地方,在开头特判的地方,由于元素和可能会溢出 I n t Int Int 上界,所以我们需要转换为在 L o n g Long Long 上的求和。

class Solution {
    fun minOperations(nums: List<Int>, target: Int): Int {
        if (nums.fold(0L) { it, acc -> it + acc } < target) return -1
        // if (nums.sum() < target) return -1 // 溢出
        // 计数
        val cnts = IntArray(32)
        for (num in nums) {
            var i = 0
            var x = num
            while (x > 1) {
                x = x shr 1
                i += 1
            }
            cnts[i]++
        }
        var ret = 0
        var i = 0
        var sum = 0L
        while(sum < target) {
            // 累加低位的 nums
            sum += (cnts[i]) shl i
            // println("i=$i, sum=$sum")
            // 低 i 位掩码
            val mask = (1 shl (i + 1)) - 1
            // 构造子问题
            if (sum < target and mask) {
                var j = i + 1
                while (cnts[j] == 0) { // 基于开头的特判,此处一定有解
                    j++
                }
                // 拆分
                ret += j - i
                i = j
            } else {
                i += 1
            }
        }
        return ret
    }
}

复杂度分析:

  • 时间复杂度: O ( n ⋅ U + U O(n·U + U O(nU+U) 其中 n n n n u m s nums nums 数组的长度, U U U 为整型大小 32 32 32
  • 空间复杂度: O ( U ) O(U) O(U) 数组空间。

写法二(散列表模拟)

在计数的部分,我们可以使用散列表模拟,复杂度相同。

class Solution {
    fun minOperations(nums: List<Int>, target: Int): Int {
        if (nums.fold(0L) { it, acc -> it + acc } < target) return -1
        // if (nums.sum() < target) return -1 // 溢出
        // 计数
        val cnts = HashMap<Int, Int>()
        for (num in nums) {
            cnts[num] = cnts.getOrDefault(num, 0) + 1
        }
        var ret = 0
        var i = 0
        var sum = 0L
        while(sum < target) {
            // 累加低位的 nums
            sum += (cnts[1 shl i] ?: 0) shl i
            // println("i=$i, sum=$sum")
            // 低 i 位掩码
            val mask = (1 shl (i + 1)) - 1
            // 构造子问题
            if (sum < target and mask) {
                var j = i + 1
                while (!cnts.containsKey(1 shl j)) { // 基于开头的特判,此处一定有解
                    j++
                }
                // 拆分
                ret += j - i
                i = j
            } else {
                i += 1
            }
        }
        return ret
    }
}

复杂度分析:

  • 时间复杂度: O ( n + U ) O(n + U) O(n+U) 其中 n n n n u m s nums nums 数组的长度, U U U 为整型大小 32 32 32
  • 空间复杂度: O ( U ) O(U) O(U) 散列表空间。

写法三(逆向思维)

思路参考雪景式的题解,前两种写法是在从小到大枚举「选哪个」,我们也可以枚举「不选哪个」。

  • 思考 1: 在原问题有解 ( s u m > t a r g e t ) (sum > target) sum>target的情况下,如果从 s u m sum sum 中剔除最大的元素 x x x 后,依然满足剩余的元素和 s u m ’ > t a r g e t sum’ > target sum>target,那么直接将 x x x 去掉,这是因为一定存在比 x x x 操作次数更小的方案能够构造 t a r g e t target target(元素越大拆分次数越多)。
  • 思考 2: 如果从 s u m sum sum 中剔除最大的元素 x x x 后不能构造,说明 x x x 是一定要选择或者拆分,此时考虑 x x x t a r g e t target target 的影响:
    • 如果 x > t a r g e t x > target x>target,那么 x x x 需要先拆分
    • 如果 x ≤ t a r g e t x ≤ target xtarget,那么 x x x 可以被选择并抵消 t a r g e t target target
class Solution {
    fun minOperations(nums: MutableList<Int>, target: Int): Int {
        var sum = nums.fold(0L) { it, acc -> it + acc }
        if (sum < target) return -1
        // 排序
        nums.sortDescending()
        // 从大到小枚举
        var ret = 0
        var left = target
        while (sum > left) {
            val x = nums.removeFirst()
            if (sum - x >= left){
                sum -= x
            } else if (x <= left) {
                sum -= x
                left -= x
            } else {
                ret += 1
                nums.add(0, x / 2)
                nums.add(0, x / 2)
            }
            // println("ret=$ret, sum=$sum, left=$left, x=$x,  nums=${nums.joinToString()}")
        }
        return ret
    }
}

复杂度分析:

  • 时间复杂度: O ( n l g n + n + U ) O(nlgn + n + U) O(nlgn+n+U) 瓶颈在排序,枚举阶段每个元素最多访问 1 1 1 次,拆分次数最多为 U U U
  • 空间复杂度: O ( l g n ) O(lgn) O(lgn) 排序递归栈空间。

T4. 在传球游戏中最大化函数值(Hard)

https://leetcode.cn/problems/maximize-value-of-function-in-a-ball-passing-game/

题解(树上倍增)

从近期周赛的趋势看,出题人似乎有意想把 LeetCode 往偏竞赛的题目引导。

这道题如果知道树上倍增算法,其实比第三题还简单一些。

  • 问题目标: 找到最佳方案,使得从起点开始传球 k k k 次的路径和最大化;
  • 暴力: 对于暴力的做法,我们可以枚举以每名玩家为起点的方案,并模拟传球过程求出最佳方案。但是这道题的步长 k k k 的上界非常大 1 0 10 10^{10} 1010,如果逐级向上传球,那么单次查询的时间复杂度是 O ( k ) O(k) O(k)。现在,需要思考如何优化模拟 k k k 次传球的效率;
  • 倍增思想: 借鉴 1483. 树节点的第 K 个祖先 的解法,我们可以利用倍增算法将线性的操作施加指数级别的贡献:
    • 如果可以预处理出每个玩家的多级后驱玩家,那么在查询时可以加速跳转;
    • 由于每个数都可以进行二进制拆分为多个 2 2 2 的幂的和,如果预处理出第 2 0 、 2 1 、 2 2 、 2 3 、 . . . 、 2 i 2^0、2^1、2^2、2^3、...、2^i 20212223...2i 个后驱玩家,那么求解第 k k k 次传球时可以转化为多次 2 i 2^i 2i 个后驱玩家跳转操作,大幅减少操作次数。
class Solution {
    fun getMaxFunctionValue(receiver: List<Int>, k: Long): Long {
        val n = receiver.size
        val m = 64 - k.countLeadingZeroBits()
        // 预处理
        // dp[i][j] 表示 i 传球 2^j 次后的节点
        val dp = Array(n) { IntArray(m) }
        // dp[i][j] 表示 i 传球 2^j 次的路径和
        val sum = Array(n) { LongArray(m) }
        for (i in 0 until n) {
            dp[i][0] = receiver[i]
            sum[i][0] = receiver[i].toLong()
        }
        for (j in 1 until m) {
            for (i in 0 until n) { // 这道题没有根节点,不需要考虑 child == -1 的情况
                val child = dp[i][j - 1]
                // 从 i 条 2^{j-1} 次,再跳 2^{j-1}
                dp[i][j] = dp[child][j - 1]
                sum[i][j] = sum[i][j - 1] + sum[child][j - 1]
            }
        }
        // 枚举方案
        var ret = 0L
        for (node in 0 until n) {
            var i = node
            var x = k
            var s = node.toLong() // 起点的贡献
            while (x != 0L) {
                val j = x.countTrailingZeroBits()
                s += sum[i][j]
                i = dp[i][j]
                x = x and (x - 1)
            }
            ret = max(ret, s)
        }
        return ret
    }
}

复杂度分析:

  • 时间复杂度:预处理时间为 O ( n l g k ) O(nlgk) O(nlgk),枚举时间为 O ( n l g k ) O(nlgk) O(nlgk),其中 n n n r e c e i v e r s receivers receivers 数组的长度;
  • 空间复杂度:预处理空间 O ( n l g k ) O(nlgk) O(nlgk)

另外,这道题还有基于「内向基环树」的 O ( n ) O(n) O(n) 解法。


推荐阅读

LeetCode 上分之旅系列往期回顾:

  • LeetCode 单周赛第 359 场 · 结合离散化的线性 DP 问题
  • LeetCode 单周赛第 358 场 · 结合中心扩展的单调栈贪心问题
  • LeetCode 双周赛第 111 场 · 按部就班地解决动态规划问题
  • LeetCode 双周赛第 110 场 · 结合排序不等式的动态规划

⭐️ 永远相信美好的事情即将发生,欢迎加入小彭的 Android 交流社群~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/937797.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

webassembly003 ggml GGML Tensor Library part-2 官方使用说明

https://github.com/ggerganov/whisper.cpp/tree/1.0.3 GGML Tensor Library 官方有一个函数使用说明&#xff0c;但是从初始版本就没修改过 : https://github1s.com/ggerganov/ggml/blob/master/include/ggml/ggml.h#L3-L173 This documentation is still a work in progres…

【档案专题】七、电子档案利用与开发

导读&#xff1a;主要针对电子档案利用与开发相关内容介绍。对从事电子档案管理信息化的职业而言&#xff0c;不断夯实电子档案管理相关理论基础是十分重要。只有通过不断梳理相关知识体系和在实际工作当中应用实践&#xff0c;才能走出一条专业化加职业化的道路&#xff0c;从…

8.缓冲区管理

第五章 I/O管理 缓冲区管理 双缓冲区&#xff1a;T<CM 假设初始状态缓冲区1满&#xff0c;缓冲区2空&#xff0c;工作区为空。 刚开始缓冲区2为空&#xff0c;所以设备可以向缓冲区2中冲入数据耗时T&#xff0c;另一方面刚开始缓冲区1中是满的&#xff0c;所以刚开始就可…

免费OCR图像识别文字识别API

免费OCR图像识别文字识别API 一、OCR图像识别文字识别二、使用步骤1、接口2、请求参数3、请求参数示例4、接口 返回示例 三、温馨提示 一、OCR图像识别文字识别 光学字符识别&#xff08;Optical Character Recognition, OCR&#xff09;是指对文本资料的图像文件进行分析识别…

[管理与领导-55]:IT基层管理者 - 扩展技能 - 1 - 时间管理 -2- 自律与自身作则,管理者管好自己时间的五步法

前言&#xff1a; 管理好自己的时间&#xff0c;不仅仅是理念&#xff0c;也是方法和流程。 步骤1&#xff1a;理清各种待办事项 当提到工作事项时&#xff0c;这通常指的是要完成或处理的工作任务或事务。这些事项可以包括以下内容&#xff1a; 任务分配&#xff1a;根据工作…

2024年天津市大学软件学院专升本专业课考试大纲

天津市大学软件学院2024年“高职升本科”联合招生专业考试大纲 一、考试性质 天津市大学软件学院“高职升本科”联合招生专业考试是由合格的高职高专毕业生参加的选拔性考试。学校根据考生的成绩&#xff0c;按照已确定的招生计划&#xff0c;德、智、体全面衡量&#xff0c;…

fat32 文件系统 误删除文件数据恢复 SDK 介绍

fat32 文件系统 误删除文件数据恢复 SDK 介绍 fat32_analyze.dll 是一个专门用于恢复 fat32 文件系统误删除文件的标准的动态链接库(DLL)&#xff0c; 可被任何其他程序直接加载调用。 下载地址&#xff1a; https://gitee.com/tankaishuai/powerful_sdks/tree/master/fat32_a…

利用多种机器学习方法对爬取到的谷歌趋势某个关键词的每日搜索次数进行学习

大家好&#xff0c;我是带我去滑雪&#xff01; 前一期利用python爬取了谷歌趋势某个关键词的每日搜索次数&#xff0c;本期利用爬取的数据进行多种机器学习方法进行学习&#xff0c;其中方法包括&#xff1a;随机森林、XGBOOST、决策树、支持向量机、神经网络、K邻近等方法&am…

导入excel数据给前端Echarts实现中国地图-类似热力图可视化

导入excel数据给前端Echarts实现中国地图-类似热力图可视化 程序文件&#xff1a; XinqiDaily/frontUtils-showSomeDatabaseonMapAboutChina/finalproject xin麒/XinQiUtilsOrDemo - 码云 - 开源中国 (gitee.com) https://gitee.com/flowers-bloom-is-the-sea/XinQiUtilsOr…

第五章 树与二叉树 二、二叉树的定义和常考考点

一、定义 二叉树可以用以下方式详细定义&#xff1a; 二叉树是由节点构成的树形结构&#xff0c;每个节点最多可以有两个子节点。每个节点有以下几个属性&#xff1a; 值&#xff1a;存储该节点的数据。左子节点&#xff1a;有一个左子节点&#xff0c;如果没有则为空。右子节…

大数据(四)主流大数据技术

大数据&#xff08;四&#xff09;主流大数据技术 一、写在前面的话 To 那些被折磨打击的好女孩&#xff08;好男孩&#xff09;&#xff1a; 有些事情我们无法选择&#xff0c;也无法逃避伤害。 但请你在任何时候都记住&#xff1a; 你可能在一些人面前&#xff0c;一文不值&a…

基于内存池的 简单高效的数据库 SDK简介

基于内存池的 简单高效的数据库 SDK简介 下载地址&#xff1a; https://gitee.com/tankaishuai/powerful_sdks/tree/master/shm_alloc_db_heap shm_alloc_db_heap 是一个基于内存池实现的简单高效的文件型数据存储引擎&#xff0c;利用它可以轻松地像访问内存块一样读、写、增…

国产系统下开发QT程序总结

国产系统下开发QT程序总结 1. 国产系统简介 开发国产系统客户端的过程中&#xff0c;会出现兼容性问题。以下介绍Kylin和UOS环境下开发QT程序&#xff0c; 首先麒麟和统信这两个系统基于Ubuntu开发的。所以在Ubuntu开发理论上在国产系统上也能运行。芯片架构又分为amd,arm,mi…

谷歌翻译国内使用

谷歌已经退出中国市场&#xff0c;如果正常想使用的谷歌翻译的话&#xff0c;需要科学上网才可以 一些涉及到谷歌翻译的软件工具软件也无法正常使用&#xff0c;如chrome浏览器右键翻译&#xff0c;potplayer在线字幕实时翻译等等 目前最有效的解决方法就是通过修改hosts文件来…

C语言链表梳理-2

链表头使用结构体&#xff1a;struct Class 链表中的每一项使用结构体&#xff1a;struct Student#include <stdio.h>struct Student {char * StudentName;int StudentAge;int StudentSex;struct Student * NextStudent; };struct Class {char *ClassName;struct Stude…

web、HTTP协议

目录 一、Web基础 1.1 HTML概述 1.1.1 HTML的文件结构 1.2 HTML中的部分基本标签 二.HTTP协议 2.1.http概念 2.2.HTTP协议版本 2.3.http请求方法 2.4.HTTP请求访问的完整过程 2.5.http状态码 2.6.http请求报文和响应报文 2.7.HTTP连接优化 三.httpd介绍 3.1.http…

前端基础(Element、vxe-table组件库的使用)

前言&#xff1a;在前端项目中&#xff0c;实际上&#xff0c;会用到组件库里的很多组件&#xff0c;本博客主要介绍Element、vxe-table这两个组件如何使用。 目录 Element 引入element 使用组件的步骤 使用对话框的示例代码 效果展示 vxe-table 引入vxe-table 成果展…

不使用ip和port如何进行网络通讯(raw socket应用例子)

主要应用方向是上位机和嵌软(如stm32单片机)通讯&#xff0c;不在单片机中嵌入web server&#xff0c;即mac层通讯。 一、下面先了解网络数据包组成。 常见数据包的包头长度: EtherHeader Length: 14 BytesTCP Header Length : 20 BytesUDP Header Length : 8 BytesIP Heade…

基于unity的轻量配置工具开发

工具结构&#xff1a;针对每张表格生成一个表格类&#xff0c;其中默认包含一个list和字典类型参数记录表格数据&#xff0c;初始化项目时将list中的数据转为按id索引的dictionary&#xff0c;用于访问数据。额外包含一个同名Temp后缀的类&#xff0c;记录表格的字段、备注等信…

李跳跳跳过APP开屏广告,附下载地址

最近&#xff0c;李跳跳APP宣布永久停止更新。据称&#xff0c;该应用导致了消费者权益的减损&#xff0c;被指构成不正当竞争&#xff0c;并因此遭受某大厂的投诉&#xff0c;甚至收到了一封法律函件的威胁。面对压力&#xff0c;最终李跳跳APP选择了退出舞台。 李跳跳APP是什…