时序预测 | MATLAB实现Attention-GRU时间序列预测(注意力机制融合门控循环单元,TPA-GRU)

news2025/1/16 6:04:28

时序预测 | MATLAB实现Attention-GRU时间序列预测----注意力机制融合门控循环单元,即TPA-GRU,时间注意力机制结合门控循环单元

目录

    • 时序预测 | MATLAB实现Attention-GRU时间序列预测----注意力机制融合门控循环单元,即TPA-GRU,时间注意力机制结合门控循环单元
      • 效果一览
      • 基本介绍
      • 模型结构
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

Matlab实现Attention-GRU时间序列预测(注意力机制融合门控循环单元,也可称呼TPA-GRU,时间注意力机制结合门控循环单元),将注意力机制( attention mechanism) 引入GRU( gated recurrent unit) 模型之中,最后,将特征数据集划分为训练集、验证集和测试集,训练集用于训练模型,确定最优模型参数,验证集和测试集用于对模型效果进行评估。

模型结构

相较于LSTM,GRU网络比较大的改动在于:
(1)GRU网络将单元状态与输出合并为隐藏状态,依靠隐藏状态来传输信息。
(2) GRU网络将LSTM 中的遗忘门和输入门整合成为了一个更新门限。正是由于这两个创新点的引入,使得GRU 模型较LSTM 模型具有如下优点: 参数量减少了三分之一,不容易发生过拟合的现象,在一些情况下可以省略dropout 环节; 在训练数据很大的时候可以有效减少运算时间,加速迭代过程,提升运算效率; 从计算角度看,其可扩展性有利于构筑较大的模型。同时,GRU继承了LSTM 处理梯度问题的能力,其门结构可以有效过滤掉无用信息,捕捉输入数据的长期依赖关系,在处理序列问题上具有非常出色的表现。

注意力机制是深度学习中的一种仿生机制,它的提出是由人类观察环境的习惯规律所总结而来的,人类在观察环境时,大脑往往只关注某几个特别重要的局部,获取需要的信息,构建出关于环境的描述,而注意力机制正是如此,其本质就是对关注部分给予较高权重,从而获取更有效的信息,从数学意义上来说,它可以理解为是一种加权求和。注意力机制的主要作用包括:
( 1) 对输入序列的不同局部,赋予不同的权重。
( 2) 对于不同的输出序列局部,给输入局部不一样赋权规划。

6
7

8

程序设计

  • 完整程序和数据下载:私信博主回复MATLAB实现Attention-GRU时间序列预测
%%  注意力参数
Attentionweight = params.attention.weight;  % 计算得分权重
Ht = GRU_Y(:, :, end);                      % 参考向量
num_time = size(GRU_Y, 3);                  % 时间尺度

%%  注意力得分
socre = dlarray;
for i = 1: num_time - 1
    A = extractdata(squeeze(GRU_Y(:, :, i)));
    A = repmat(A, [1, 1, num_hidden]);
    A = permute(A, [1, 3, 2]);
    A = dlarray(A, 'SCB');
    B = squeeze(sum(A .* dlarray(Attentionweight, 'SC'), 1));
    C = squeeze(sum(B .* Ht, 1));
    socre = [socre; C];
end
%%  注意力得分
a = sigmoid(socre);
Vt = 0;
for i = 1: num_time - 1
    Vt = Vt + a(i, :) .* GRU_Y(:, :, i);
end
%%  注意力机制
bias1 = params.attenout.bias1;
bias2 = params.attenout.bias2;
weight1 = params.attenout.weight1;
weight2 = params.attenout.weight2;
HVT = fullyconnect(Vt, weight1, bias1) + fullyconnect(Ht, weight2, bias2);
%%  全连接层
LastBias = params.fullyconnect.bias1;
LastWeight = params.fullyconnect.weight1;
%%  注意力参数初始化
params.attention.weight = gpuArray(dlarray(0.01 * randn(num_hidden, num_hidden)));
%%  注意力权重初始化
params.attenout.weight1 = gpuArray(dlarray(0.01 * randn(num_hidden, num_hidden)));
params.attenout.weight2 = gpuArray(dlarray(0.01 * randn(num_hidden, num_hidden)));

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/127944569?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/127944537?spm=1001.2014.3001.5502

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/935362.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

煤矿皮带运输智能监控算法 opencv

煤矿皮带运输智能监控算法通过opencvpython深度学习算法网络模型,煤矿皮带运输智能监控算法实时监测皮带运输过程中的各种异常情况,如跑偏、撕裂、堆料异常等,一旦检测到异常情况,立即发出告警并采取相应的措施,以保障…

搭建开发环境-WSL+Ubuntu(一键搭建开发环境)

概述 所谓工欲善其事必先利其器,搭环境往往是开发过程中卡出很多初学者的拦路虎。 对于很多老鸟来说,很多东西都已经习惯成自然,也就没有刻意和初学者说。但对于很多初学者,却是受益良多。 这个系列,先从操作系统开始…

MySQL数据库——约束(概述、约束演示、外键约束、删除/更新行为)

目录 概述 约束演示 表格创建 验证 图形化界面约束 外键约束 概念 语法 外键删除/更新行为 总结 概述 概念:约束是作用于表中字段上的规则,用于限制存储在表中数据。目的:保证数据库中数据的正确、有效性和完整性。分类&#xff1…

有哪些常人不知道的赚钱方法?

在目前互联网时期,如果说还有什么挣钱方法让别人不知道,那一定是赚大钱或者违法乱纪的挣钱渠道。但是对于普通人而言,确实是有一些挣钱的方法不被其了解,我这里就介绍几个,供大家一起探讨。 第一个:知识变…

TCP/IP五层模型、封装和分用

1.网络通信基础2.协议分层OSI七层协议模型TCP/IP五层/四层协议模型【重点】 3. 封装&分用 1.网络通信基础 IP地址:表示计算机的位置,分源IP和目标IP;举个例子:买快递,商家从上海发货,上海就是源IP&…

爱奇艺数据湖实战 - 基于数据湖的日志平台架构演进

01 背景 为了满足公司内日志实时查询分析的需求,爱奇艺大数据团队自研了Venus日志服务平台,负责爱奇艺各服务日志的采集、存储、处理、分析等场景。早期采用基于ElasticSearch的存储分析架构,随着数据规模的不断扩大,出现了成本高…

C语言基础之——指针(上)

前言:小伙伴们又见面啦!本期内容,博主将展开讲解有关C语言中指针的上半部分基础知识,一起学习起来叭!!! 目录 一.什么是指针 二.指针类型 1.指针的解引用 2.指针-整数 三.野指针 1.野指针…

Day46|动态规划part08:139.单词拆分、多重背包理论基础、背包问题总结

139. 单词拆分 leetcode链接:力扣题目链接 视频链接:你的背包如何装满?| LeetCode:139.单词拆分 给你一个字符串 s 和一个字符串列表 wordDict 作为字典。请你判断是否可以利用字典中出现的单词拼接出 s 。注意:不要…

【Linux】目录结构、路径

目录 1. 目录结构 1.1 基本概念 1.2 具体的目录结构 2. 路径 2.1 绝对路径和相对路径 2.2 特殊路径符 1. 目录结构 1.1 基本概念 Linux的目录结构是一个树形结构。 Windows系统可以拥有多个盘符,如 C盘、D盘、E盘。Linux没有盘符这个概念,只有一…

树莓派自带的GPIO串口输出及输出乱码问题解决方案

可以使用树莓派的UART0进行串口输出,具体连接方法如图所示: 连接后可以使用如下代码发送串口数据: import serial import time# 串口初始化 ser serial.Serial(/dev/serial0, 9600, timeout1) # /dev/serial0 是树莓派上默认的串口设备# 发…

图书馆项目Java阅览室管理系统jsp源代码MySQL

本项目为前几天收费帮学妹做的一个项目,Java EE JSP项目,在工作环境中基本使用不到,但是很多学校把这个当作编程入门的项目来做,故分享出本项目供初学者参考。 一、项目描述 图书馆项目 系统有1权限:管理员 用所技术…

Scikit-Learn中的特征选择和特征提取详解

概要 机器学习在现代技术中扮演着越来越重要的角色。不论是在商业界还是科学领域,机器学习都被广泛地应用。在机器学习的过程中,我们需要从原始数据中提取出有用的特征,以便训练出好的模型。但是,如何选择最佳的特征是一个关键问…

eslint和prettier格式化冲突

下载插件 ESLint 和 Prettier ESLint 进入setting.json中 setting.json中配置 {"editor.tabSize": 2,"editor.linkedEditing": true,"security.workspace.trust.untrustedFiles": "open","git.autofetch": true,"…

ARM开发,stm32mp157a-A7核(UART总线实验)

1.目标:键盘输入一个字符a,串口工具显示b; 键盘输入一个字符串"nihao",串口工具显示"nihao"; 2.框图分析: 3.代码: ---.h头文件--- #ifndef __UART4_H__ #define __UART4_H__#include "st…

1.Prometheus

文章目录 Prometheus概述存储特点生态组件Prometheus serverClient LibraryExportersService DiscoveryAlertmanagerPushgatewayGrafana 工作模式工作流程局限性 部署prometheus部署 Node Exporter部署mysqld_exporter部署nginx-exporter部署grafana 总结 Prometheus 概述 za…

Yolo系列-yolov1

YOLO-V1 经典的one-stage方法 YouOnlyLookOnce,名字就已经说明了一切!把检测问题转化成回归问题,一个CNN就搞定了!可以对视频进行实时检测,应用领域非常广! 核心思想: Yolov1的核心思想是将对象…

Adapter Tuning Overview:在CV,NLP,多模态领域的代表性工作

文章目录 Delta TuningAdapter Tuning in CVAdapter Tuning in NLP Delta Tuning Adapter Tuning in CV 题目: Learning multiple visual domains with residual adapters 机构:牛津VGG组 论文: https://arxiv.org/pdf/1705.08045.pdf Adapter Tuning in NLP …

input输入框和按钮相关联

有了内容,提交按钮才会起作用!!! 当input输入框中输入内容的时候,按钮从禁用状态变成可用状态! 输入框中输入的内容会同步输出, 输入的内容被存放在e.detail.value中,将其提取出来赋…

MybatisPlus拦截器实战之数据的加解密和脱敏

文章目录 一、前言二、拦截器简介三、代码目录结构简介四、核心代码讲解4.1 application.yml文件4.2 自定义注解4.2.1 SensitiveEntity4.2.2 SensitiveData4.2.3 MaskedEntity4.2.4 MaskedField4.2.5 MaskedMethod 4.3 Mybatis-Plus 拦截器数据自动加密4.4 Mybatis 打印完整sql…

浅析Linux SCSI子系统:设备管理

文章目录 概述设备管理数据结构scsi_host_template:SCSI主机适配器模板scsi_host:SCSI主机适配器主机适配器支持DIF scsi_target:SCSI目标节点scsi_device:SCSI设备 添加主机适配器构建sysfs目录 添加SCSI设备挂载Lun 相关参考 概…