【NLP的python库(01/4) 】: NLTK

news2024/11/16 1:37:40

一、说明

        NLTK是一个复杂的库。自 2009 年以来不断发展,它支持所有经典的 NLP 任务,从标记化、词干提取、词性标记,包括语义索引和依赖关系解析。它还具有一组丰富的附加功能,例如内置语料库,NLP任务的不同模型以及与SciKit Learn和其他Python库的集成。

        本文是对NLTK的简要介绍。您将看到NLTK的实际操作,可用于各种NLP任务的简短代码片段。

这篇文章最初出现在我的博客 admantium.com。

本文的技术上下文是 和 。所有示例也应该适用于较新的版本。Python v3.11NLTK v3.8.1

二、NLTK 库安装

NLTK可以通过Python pip安装:

python3 -m pip install nltk 

        一些NLTK功能需要使用其他数据,例如停用词或集成语料库。为此,使用内置下载器。下面是一个示例:


import nltk

nltk.download('stopwords')
nltk.download('punkt')
nltk.download('averaged_perceptron_tagger')
nltk.download('reuters')

        其他部分,如专用分词器或停用词,需要安装 Java 库。请参阅此 Github Gist 以开始使用。

三、自然语言处理任务

        NLTK支持多个NLP任务。下面是一个简短的概述,接下来的部分将提供更多详细信息:

文本处理

  • 标记化
  • 堵塞
  • 词形还原

文本语法

  • 词性标记

文本语义

  • 命名实体识别

文档语义

  • 聚类
  • 分类

此外,NLTK 还支持以下附加功能:

  • 数据
  • 语料库管理
  • 机器学习聚类和分类模型

四、文本处理

4.1 标记化

        标记化是文本处理中必不可少的第一步。通常,应根据项目要求和后续NLP任务来选择标记化方法。例如,当文本包含表示实体或人的多名词,但分词器只是按空格拆分时,命名实体识别变得困难。

        NLTK提供了一个简单的空格标记器,几个内置的标记器,如NIST或Stanford,以及基于正则表达式的自定义标记器选项。

        下面是内置句子和单词分词器的示例:

from nltk.tokenize import sent_tokenize, word_tokenize

# Source: Wikipedia, Artificial Intelligence, https://en.wikipedia.org/wiki/Artificial_intelligence
paragraph = '''Artificial intelligence was founded as an academic discipline in 1956, and in the years since it has experienced several waves of optimism, followed by disappointment and the loss of funding (known as an "AI winter"), followed by new approaches, success, and renewed funding. AI research has tried and discarded many different approaches, including simulating the brain, modeling human problem solving, formal logic, large databases of knowledge, and imitating animal behavior. In the first decades of the 21st century, highly mathematical and statistical machine learning has dominated the field, and this technique has proved highly successful, helping to solve many challenging problems throughout industry and academia.'''
sentences = []

for sent in sent_tokenize(paragraph):
  sentences.append(word_tokenize(sent))

sentences[0]
# ['Artificial', 'intelligence', 'was', 'founded', 'as', 'an', 'academic', 'discipline'

4.2 词干提取和词形还原

        与标记化一样,选择合适的词干提取(将屈折词替换为词干,如用厨师烹饪)和词形还原(用词干替换词组)方法取决于后续的 NLP 任务。词形还原具有特殊作用,因为它需要一些词性标记或词义消歧来正确识别单词组。

        NLTK提供了几个词干模块,如Porter,Lancaster和Isri。对于词形还原,仅提供 Wordnet。

        让我们比较一下维基百科文章中关于人工智能的第一句话的词干和词形还原。

from nltk.stem import LancasterStemmer

sent = 'Artificial intelligence was founded as an academic discipline in 1956, and in the years since it has experienced several waves of optimism, followed by disappointment and the loss of funding (known as an "AI winter"), followed by new approaches, success, and renewed funding.'
stemmer = LancasterStemmer()
stemmed_sent = [stemmer.stem(word) for word in word_tokenize(sent)]

print(stemmed_sent)
# ['art', 'intellig', 'was', 'found', 'as', 'an', 'academ', 'disciplin',

        用WordNet词形还原器处理的同一个句子:

from nltk.stem import WordNetLemmatizer

sent = 'Artificial intelligence was founded as an academic discipline in 1956, and in the years since it has experienced several waves of optimism, followed by disappointment and the loss of funding (known as an "AI winter"), followed by new approaches, success, and renewed funding.'
lemmatizer = WordNetLemmatizer()
lemmas = [lemmatizer.lemmatize(word) for word in word_tokenize(sent)]

print(lemmas)
# ['Artificial', 'intelligence', 'wa', 'founded', 'a', 'an', 'academic', 'discipline'

五、文本语法

      词性标记

        NLTK还提供不同的词性标记器(pos)。使用内置标记器,将生成以下注释:

        标签含义 ADJ 形容词 ADP 附加置词 ADV 副词 CONJ 连词 DET 决定符,文章名词名词 NUM 数字 PRT 助词 PRON 代词 动词 动词 .标点符号 X 其他

        取维基百科关于人工智能的文章的第一句话,词性标记产生以下结果。

from nltk import pos_tag

sent = 'Artificial intelligence was founded as an academic discipline in 1956, and in the years since it has experienced several waves of optimism, followed by disappointment and the loss of funding (known as an "AI winter"), followed by new approaches, success, and renewed funding.'
pos_tag(sentences[0])
# [('Artificial', 'JJ'),
#  ('intelligence', 'NN'),
#  ('was', 'VBD'),
#  ('founded', 'VBN'),
#  ('as', 'IN'),
#  ('an', 'DT'),
#  ('academic', 'JJ'),
#  ('discipline', 'NN'),

        要使用其他NLTK pos标记器,例如Stanford或Brill,需要下载外部Java库。

六、文本语义

        命名实体识别

        NLTK包括预先训练的NER标记器,但需要先下载几个额外的包。

import nltk nltk.download('maxent_ne_chunker')nltk.download('punkt')nltk.download('averaged_perceptron_tagger')


nltk.download
('words')

        NER 标记器使用 POS 标记的句子,并将分类标签添加到表示形式中。在示例段落上使用它不会产生任何结果,因此以下示例从维基百科文章中引用了另一个句子,其中提到了人物。

from nltk.tokenize import sent_tokenize

# Source: Wikipedia, Artificial Intelligence, https://en.wikipedia.org/wiki/Artificial_intelligence
sentence= '''
In 2011, in a Jeopardy! quiz show exhibition match, IBM's question answering system, Watson, defeated the two greatest Jeopardy! champions, Brad Rutter and Ken Jennings, by a significant margin.
'''

tagged_sentence = nltk.pos_tag(word_tokenize(sentence))
tagged_sentence
# [('In', 'IN'),
#  ('2011', 'CD'),
#  (',', ','),
#  ('in', 'IN'),
#  ('a', 'DT'),
#  ('Jeopardy', 'NN'),

print(nltk.ne_chunk(tagged_sentence))
# (S
#   In/IN
#   2011/CD
#   ,/,
#   in/IN
#   a/DT
#   Jeopardy/NN
#   !/.
#   quiz/NN
#   show/NN
#   exhibition/NN
#   match/NN
#   ,/,
#   (ORGANIZATION IBM/NNP)
#   's/POS
#   question/NN
#   answering/NN
#   system/NN
#   ,/,
#   (PERSON Watson/NNP)

如您所见,个人和组织得到了认可。WatsonIBM

七、文档语义

7.1 聚类

支持三种聚类分析算法,请参阅完整文档。

  • K 均值
  • 电磁集群
  • 组平均集聚聚类器 (GAAC)

7.2 分类

以下分类器在 NLTK 中实现,另请参阅完整文档。

  • 决策树
  • 最大熵建模
  • 兆米最大优化
  • 朴素贝叶斯(及其变体)

支持外部包,如用于语言识别的TextCat,Java库Weka或SciKitLearn分类器。

八、附加功能

8.1 数据

NLTK提供了100多个内置语料库,请参阅完整列表。一些例子:路透社新闻文章,Treebank 2华尔街日报校园,Twitter新闻或WordNet词汇数据库。

以下是如何访问路透社语料库的示例。

from nltk.corpus import reuters

print(reuters.categories()[:10])
#['acq', 'alum', 'barley', 'bop', 'carcass', 'castor-oil', 'cocoa', 'coconut', 'coconut-oil', 'coffee']

print(reuters.fileids()[:10])
# ['test/14826', 'test/14828', 'test/14829', 'test/14832', 'test/14833', 'test/14839', 'test/14840', 'test/14841', 'test/14842', 'test/14843']

sample = 'test/14829'
categories = reuters.categories(sample)

print(categories)
# ['acq', 'alum', 'barley', 'bop', 'carcass', 'castor-oil', 'cocoa', 'coconut', 'coconut-oil', 'coffee']

content = ""
with reuters.open(sample) as stream:
    content = stream.read()

print(f"Categories #{categories} / file #{sample}")
# Categories #['crude', 'nat-gas'] / file #test/14829

print(f"Content:\#{content}")
# Content:\#JAPAN TO REVISE LONG-TERM ENERGY DEMAND DOWNWARDS
# The Ministry of International Trade and
# Industry (MITI) will revise its long-term energy supply/demand
# outlook by August to meet a forecast downtrend in Japanese
# energy demand, ministry officials said.
#     MITI is expected to lower the projection for primary energy
# supplies in the year 2000 to 550 mln kilolitres (kl) from 600
# mln, they said.
#     The decision follows the emergence of structural changes in
# Japanese industry following the rise in the value of the yen
# and a decline in domestic electric power demand.
#     MITI is planning to work out a revised energy supply/demand
# outlook through deliberations of committee meetings of the
# Agency of Natural Resources and Energy, the officials said.
#     They said MITI will also review the breakdown of energy
# supply sources, including oil, nuclear, coal and natural gas.
#     Nuclear energy provided the bulk of Japan's electric power
# in the fiscal year ended March 31, supplying an estimated 27
# pct on a kilowatt/hour basis, followed by oil (23 pct) and
# liquefied natural gas (21 pct), they noted.

8.2 语料库管理

语料库阅读器

NLTK 文档集读取器对象提供读取、筛选、解码和预处理结构化文件列表或 zip 文件。

存在许多不同的语料库读取器对象,请参阅完整列表。最常见的读者是:

  • PlaintextCorpusReader:阅读段落拆分为空白行的文本文档。
  • Markdown:处理 Markdown 文件,其中其类别在文件名中表示
  • 已标记:需要已标记语料库的特殊语料库读取器对象,例如 Conl。请注意,对于多个内置语料库对象,标记的版本已经存在。
  • 推特:处理 JSON 格式的推文
  • XML:处理 XML 文件

作为一个简短的例子,下面是一个将读取文件。PlaintextCorpusReader*.txt

from  nltk.corpus.reader.plaintext import PlaintextCorpusReader

corpus = PlaintextCorpusReader('wikipedia_articles', r'.*\.txt')

print(corpus.fileids())
# ['AI_alignment.txt', 'AI_safety.txt', 'Artificial_intelligence.txt', 'Machine_learning.txt']

print(corpus.sents())
# [['In', 'the', 'field', 'of', 'artificial', 'intelligence', '(', 'AI', '),', 'AI', 'alignment', 'research', 'aims', 'to', 'steer', 'AI', 'systems', 'towards', 'humans', ''', 'intended', 'goals', ',', 'preferences', ',', 'or', 'ethical', 'principles', '.'], ['An', 'AI', 'system', 'is', 'considered', 'aligned', 'if', 'it', 'advances', 'the', 'intended', 'objectives', '.'], ...]

8.3 文本集合

        另一个从语料库访问结构化信息的实用工具是 TextCollection 类。在标记化文本上实例化,它提供以下功能:

  • collocations(num, window_size):返回到长度的元组,单词并置出现numwindow_size
  • collocation_list(num, window_size):将并置单词输出为元组列表
  • common_contexts(word, num):打印显示的上下文word
  • concordance(word, width, lines):打印给定的索引(单个单词或句子)word
  • concordance_list(word, width, lines):打印元组列表
  • count(word):单词的绝对外观
  • tf, , : 单词的频率idftf_idf
  • generate:基于三元组语言模型创建随机文本。
  • vocab:所有代币的频率分布
  • plot:绘制频率分布

        下面是一个示例:

from  nltk.corpus.reader.plaintext import PlaintextCorpusReader
from nltk.text import TextCollection

corpus = PlaintextCorpusReader('wikipedia_articles', r'.*\.txt')
col = TextCollection(corpus.sents())
print(col.count('the'))
# 973
print(col.common_contexts(['intelligence']))
# artificial_( general_( artificial_. artificial_is general_,
# artificial_, artificial_in artificial_". artificial_and "_"
# artificial_was general_and general_. artificial_; artificial_" of_or
# artificial_– artificial_to artificial_: and_.

九、机器学习聚类和分类模型

        NLTK 提供了几种聚类和分类算法。但在使用任何算法之前,需要手动设计和从文本中提取特征。

在有关分类的 API 文档页面上,步骤定义如下:

  • 定义与 ML 任务相关的功能
  • 实现从语料库中提取特征的方法(例如,文档中的词频)
  • 创建一个包含单个元组的 Python 字典对象,并将它们传递给训练算法(feature_name, labels)

让我们用 NLTK 手册中的一个例子来说明这一点,以构建文本分类器。

首先,我们建立一个包含所有单词的词汇表:


from  nltk.corpus.reader.plaintext import PlaintextCorpusReader
corpus = PlaintextCorpusReader('wikipedia_articles', r'.*\.txt')

vocab = nltk.FreqDist(w.lower() for w in corpus.words())
#  FreqDist({'the': 65590, ',': 63310, '.': 52247, 'of': 39000, 'and': 30868, 'a': 30130, 'to': 27881, 'in': 24501, '-': 19867, '(': 18243, ...})
all_words = nltk.FreqDist(w.lower() for w in corpus.words())
word_features = list(all_words)
# ['the', ':']

        其次,我们定义一种方法,该方法返回一个热编码的单词向量,该向量表示文档中是否存在单词。生成的特征向量必须包含布尔值,才能用于分类任务。

def document_features(document):
    document_words = set(corpus.words(document))
    features = {}
    for word in word_features:
        features['contains({})'.format(word)] = (word in document_words)
    return features

f = document_features('Artificial_intelligence.txt')
# {'contains(the)': True,
#  'contains(,)': True,
#  'contains(.)': True,

第三,我们选择一种分类算法,并将特征化的文档传递给它。

featuresets = [(document_features(d), d) for d in corpus.fileids()]
featuresets
# featuresets = [(document_features(d), d) for d in corpus.fileids()]

train_set, test_set = featuresets[100:], featuresets[:100]
classifier = nltk.NaiveBayesClassifier.train(train_set)
# <nltk.classify.naivebayes.NaiveBayesClassifier at 0x185ec5dd0>

十、总结

        NLTK 是一个支持多个 NLP 任务的多功能库。对于标记化、词干提取/词形还原和词性标记的核心任务,包括内置方法以及科学论文中的方法。为了管理文档语料库,NLTK处理文本,Markdown,XML和其他格式,并提供API来获取文件,类别,句子和单词。特别有用的是能够收集单词搭配和计算术语频率的类。塞巴斯蒂安 最后,NLTK还提供了聚类和分类算法,如KMeans。决策树或朴素贝叶斯。TextCollection

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/930941.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【LeetCode75】第三十七题 二叉树中的最长交错路径

目录 题目&#xff1a; 示例&#xff1a; 分析&#xff1a; 代码&#xff1a; 题目&#xff1a; 示例&#xff1a; 分析&#xff1a; 给我们一棵二叉树&#xff0c;问我们在这棵树里能找到的最长交错路径。最长交错路径就是在二叉树里一左一右一左一右这样走&#xff0c;最…

Golang Gorm 高级查询之where + find

插入测试数据 package mainimport ("fmt""gorm.io/driver/mysql""gorm.io/gorm" )type Student struct {ID int64Name string gorm:"size:6"Age intEmail *string }func (*Student) TableName() string {return "student&q…

自动化测试概况和认知

前言 书中说测试架构师掌握自动化测试的目的不是设计自动化架构或是具体来部署自动化&#xff0c;而是用好自动化。其实这一点我觉得对涉及自动化测试的人员都是通用的&#xff0c;只是偏重点不同。 往往自动化测试前期投入成本可能会大一点&#xff0c;比如框架设计、技术选…

神经网络的工作原理

目录 神经网络的介绍 神经网络的组成 神经网络的工作原理 Numpy 实现神经元 Numpy 实现前向传播 Numpy 实现一个可学习的神经网络 神经网络的介绍 神经网络受人类大脑启发的算法。简单来说&#xff0c;当你睁开眼睛时&#xff0c;你看到的物体叫做数据&#xff0c;再由你…

【论文笔记】Planning and Decision-Making for Autonomous Vehicles

文章目录 Summary1. INTRODUCTION2. MOTION PLANNING AND CONTROL2.1. Vehicle Dynamics and Control2.2. Parallel Autonomy2.3. Motion Planning for Autonomous Vehicles 3. INTEGRATED PERCEPTION AND PLANNING3.1. From Classical Perception to Current Challenges in Ne…

一篇读懂辐射检测仪应用解决方案技术(附方案选型及原理分析)

关于常见的辐射检测仪应用方案&#xff1a; 辐射检测仪是用于测量环境中辐射水平的设备&#xff0c;常用于核电站、医疗机构、实验室和核辐射工作场所等地方。以下是一种可能的辐射检测仪应用方案&#xff1a; 实时监测&#xff1a;辐射检测仪可以实时监测环境中的辐射水平&am…

NIST测试包的可能问题

其实,大多数出现的问题,可能或多或少都可能跟数据集的大小相关。 如: Random Excursions Variant,在测试结果中,可能显示为横线,打开原始报告,可以看到: WARNING: TEST NOT APPLICABLE. THERE ARE AN INSUFFICIENT NUMBER INSUFFICIENT NUMBER OF C…

【C++ 学习 ⑰】- 继承(下)

目录 一、派生类的默认成员函数 二、继承与友元 三、继承与静态成员 四、复杂的菱形继承及菱形虚拟继承 五、继承和组合 一、派生类的默认成员函数 派生类的构造函数必须调用基类的构造函数初始化基类的那一部分成员。如果基类没有默认构造函数&#xff0c;那么必须在派生…

spring框架:简介+依赖注入

目录 一、spring简介 二、创建项目 三、spring创建对象 四、SpringBean管理 1.注入实现-XML 2.注入实现-注解 一、spring简介 spring诞生与2003年&#xff0c;是一个轻量级的、IOC( Inversion Of Control 控制反转)和AOP(Aspect Oriented Programming 面向切面编程)的jav…

linux挂载内网镜像源文件,支持yum安装

cd /etc/yum.repos.d/vim kylin_aarch64.repo 重建yum缓存 yum clean allyum makecacheyum repolist

【vue】实现高性能虚拟滚动的Vue代码解析

在前端开发中&#xff0c;当需要展示大量数据时&#xff0c;如何保持页面的流畅性是一个挑战。传统的滚动方式会将所有数据一次性渲染到页面&#xff0c;这可能导致页面加载缓慢甚至崩溃。而虚拟滚动技术能够解决这个问题&#xff0c;它只渲染可视区域内的数据&#xff0c;从而…

Vue2向Vue3过度Vuex核心概念actions

目录 1 核心概念 - actions1.定义actions2.组件中通过dispatch调用 2 辅助函数 -mapActions 1 核心概念 - actions state是存放数据的&#xff0c;mutations是同步更新数据 (便于监测数据的变化, 更新视图等, 方便于调试工具查看变化)&#xff0c; actions则负责进行异步操作 说…

用Python写一个武侠游戏

前言 在本教程中&#xff0c;我们将使用Python写一个武侠类的游戏&#xff0c;大的框架全部搭好了&#xff0c;很多元素都可以自己添加&#xff0c;让游戏更丰富 &#x1f4dd;个人主页→数据挖掘博主ZTLJQ的主页 个人推荐python学习系列&#xff1a; ☄️爬虫JS逆向系列专栏 -…

PHP自己的框架cookie()使用(完善篇七)

1、PHP自己的框架cookie() 2、cookie类&#xff08;CookieBase.php&#xff09; <?php class CookieBase {/*** 设置cookie*/public static function set($name, $value, $expire 3600, $path , $domain , $secure false, $httponly false) {setcookie($name, $valu…

Verilog 实现超声波测距

Verilog 实现超声波测距 教学视频&#xff1a; https://www.bilibili.com/video/BV1Ve411x75W?p33&spm_id_frompageDriver&vd_source19ae31dff4056e52d2729a4ca212602b 超声波测距原理 参考资料&#xff1a;STM32的超声波测距程序_超声波测距stm32程序_VaderZhang的…

cs231n assignment3 q5 Self-Supervised Learning for Image Classification

文章目录 嫌墨迹直接看代码Q5 Self-Supervised Learning for Image Classificationcompute_train_transform CIFAR10Pair.__getitem__()题面解析代码输出 simclr_loss_naive题面解析代码输出 sim_positive_pairs题面解析代码输出 compute_sim_matrix题面解析代码输出 simclr_lo…

37、springboot 为 spring mvc 提供的自动配置及对自动配置的一些自定义定制(大体思路)

springboot 为 spring mvc 提供的自动配置及对自动配置的一些自定义定制&#xff08;大体思路&#xff09; ★ Spring Boot主流支持两个MVC框架&#xff1a; Spring MVC&#xff08;基于Servlet&#xff09; Spring WebFlux&#xff08;基于Reactive&#xff0c;属于响应式AP…

开源双语对话语言模型 ChatGLM-6B 本地私有化部署

本文首发于&#xff1a;https://www.licorne.ink/2023/08/llm-chatglm-6b-local-deploy/ ChatGLM-6B 是一个开源的、支持中英双语的对话语言模型&#xff0c;基于 General Language Model (GLM) 架构&#xff0c;具有 62 亿参数。结合模型量化技术&#xff0c;用户可以在消费级…

人员跌倒检测识别预警

人员跌倒检测识别预警系统通过pythonopencv深度学习网络模型架构&#xff0c;人员跌倒检测识别预警系统实时监测老人的活动状态&#xff0c;通过图像识别和行为分析算法&#xff0c;对老人的姿态、步态等进行检测和识别&#xff0c;一旦系统检测到跌倒事件&#xff0c;立即发出…

Vue2向Vue3过度Vuex核心概念state状态

目录 1 核心概念 - state 状态1.目标2.提供数据3.访问Vuex中的数据4.通过$store访问的语法5.代码实现5.1模板中使用5.2组件逻辑中使用5.3 js文件中使用 2 通过辅助函数 - mapState获取 state中的数据1.第一步&#xff1a;导入mapState (mapState是vuex中的一个函数)2.第二步&am…