足球- EDA的历史数据分析并可视化

news2024/11/23 21:04:51

足球- EDA的历史数据分析并可视化

  • 背景
  • 数据介绍
  • 探索数据时需要遵循的一些方向:
  • 数据处理
    • 导入库
    • 数据探索
  • 数据可视化
    • 赛事分析
    • 主客场比分
    • 相关性分析
    • 时间序列分析
  • 总结

背景

该数据集包括从1872年第一场正式比赛到2023年的44,341场国际足球比赛的结果。比赛范围从FIFA世界杯到FIFI Wild杯再到常规的友谊赛。这些比赛严格来说是男子国际比赛,数据不包括奥运会或至少有一支球队是国家B队、U-23或联赛精选队的比赛。

数据介绍

results.csv包括以下列:

  • date - 比赛日期
  • home_team - 主队的名字
  • away_team - 客场球队的名称
  • home_score - 全职主队得分,包括加时赛,不包括点球大战
  • away_score - 全职客队得分,包括加时赛,不包括点球大战
  • tournament - 锦标赛的名称
  • city - 比赛所在城市/城镇/行政单位的名称
  • country -比赛所在国家的名称
  • neutral - 真/假栏,表示比赛是否在中立场地进行

探索数据时需要遵循的一些方向:

谁是有史以来最好的球队

哪些球队统治了不同时代的足球

古往今来,国际足球有什么趋势——主场优势、总进球数、球队实力分布等

我们能从足球比赛中对地缘政治说些什么吗——国家的数量是如何变化的

哪些球队喜欢相互比赛

哪些国家主办了最多自己没有参加的比赛

举办大型赛事对一个国家在比赛中的胜算有多大帮助

哪些球队在友谊赛和友谊赛中最积极——这对他们有帮助还是有伤害

数据处理

import numpy as np 
import pandas as pd 
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
    for filename in filenames:
        print(os.path.join(dirname, filename))

导入库

import matplotlib.pyplot as plt
import seaborn as sns

数据探索

df = pd.read_csv('/kaggle/input/international-football-results-from-1872-to-2017/results.csv')
df.head()

在这里插入图片描述

print(f"This Dataset Includes {df.shape}")

在这里插入图片描述

df.info()

在这里插入图片描述

df.describe()

在这里插入图片描述

df.describe(include=object)

在这里插入图片描述

df.isna().sum()

在这里插入图片描述

将“日期”列转换为日期时间类型

df['date'] = pd.to_datetime(df['date'])

数据可视化

赛事分析

plt.figure(figsize=(20, 12))
sns.countplot(x='tournament', data=df)
plt.xticks(rotation=90)
plt.title('Tournament Distribution')
plt.xlabel('Tournament')
plt.ylabel('Count')
plt.tight_layout()
plt.show()

在这里插入图片描述

主客场比分

plt.figure(figsize=(12, 8))
plt.subplot(1, 2, 1)
sns.histplot(df['home_score'], bins=20, kde=True)
plt.title('Distribution of Home Scores')
plt.xlabel('Home Score')
plt.ylabel('Frequency')
#Setting limit for first plot
plt.ylim(0, 40000)


plt.subplot(1, 2, 2)
sns.histplot(df['away_score'], bins=20, kde=True)
plt.title('Distribution of Away Scores')
plt.xlabel('Away Score')
plt.ylabel('Frequency')
# Share y-axis between subplots
plt.ylim(0, 40000)

plt.tight_layout()
plt.show()

在这里插入图片描述

相关性分析

correlation_matrix = df.corr()
plt.figure(figsize=(10, 6))
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm')
plt.title('Correlation Matrix')
plt.show()

在这里插入图片描述

时间序列分析

# 为年份创建新列
df['year'] = df['date'].dt.year

#时间序列分析
plt.figure(figsize=(10, 6))
sns.lineplot(x='year', y='home_score', data=df, label='Home Score')
sns.lineplot(x='year', y='away_score', data=df, label='Away Score')
plt.title('Trends in Home and Away Scores over Time')
plt.xlabel('Year')
plt.ylabel('Score')
plt.legend()
plt.tight_layout()
plt.show()

在这里插入图片描述

总结

以上就是今天分享的内容

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/929771.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

GPIO输入-外电检测

前言 (1)本系列是基于STM32的项目笔记,内容涵盖了STM32各种外设的使用,由浅入深。 (2)小编使用的单片机是STM32F105RCT6,项目笔记基于小编的实际项目,但是博客中的内容适用于各种单片…

Property ‘sqlSessionFactory‘ or ‘sqlSessionTemplate‘ are required问题解决

运行程序的时候出现了如下的报错: 解决方法:去除EnableAutoConfiguration中的(exclude{DataSourceAutoConfiguration.class})

淘宝API技术解析,实现关键词搜索淘宝商品(商品详情接口等)

淘宝提供了开放平台接口(API)来实现按图搜索淘宝商品的功能。您可以通过以下步骤来实现: 获取开放平台的访问权限:首先,您需要在淘宝开放平台创建一个应用,获取访问淘宝API的权限。具体的申请步骤和要求可以…

行业追踪,2023-08-25

自动复盘 2023-08-25 凡所有相,皆是虚妄。若见诸相非相,即见如来。 k 线图是最好的老师,每天持续发布板块的rps排名,追踪板块,板块来开仓,板块去清仓,丢弃自以为是的想法,板块去留让…

Flink流批一体计算(18):PyFlink DataStream API之计算和Sink

目录 1. 在上节数据流上执行转换操作,或者使用 sink 将数据写入外部系统。 2. File Sink File Sink Format Types Row-encoded Formats Bulk-encoded Formats 桶分配 滚动策略 3. 如何输出结果 Print 集合数据到客户端,execute_and_collect…

Python爬虫分布式架构问题汇总

在使用Python爬虫分布式架构中可能出现以下的问题,我们针对这些问题,列出相应解决方案: 1、任务重复执行 在分布式环境下,多个爬虫节点同时从消息队列中获取任务,可能导致任务重复执行的问题。 解决方案:…

十三、pikachu之暴力破解

文章目录 1、暴力破解概述2、基于表单的暴力破解3、验证码的绕过3.1 验证码的认证流程3.2 验证码绕过(on client)3.3 验证码绕过(on server)3.4 token防爆破? 1、暴力破解概述 “暴力破解”是一攻击具手段,…

L1-035 情人节(Python实现) 测试点全过

题目 以上是朋友圈中一奇葩贴:“2月14情人节了,我决定造福大家。第2个赞和第14个赞的,我介绍你俩认识…………咱三吃饭…你俩请…”。现给出此贴下点赞的朋友名单,请你找出那两位要请客的倒霉蛋。 输入格式 输入按照点赞的先后顺…

Python数据分析 | 各种图表对比总结

本期将带领大家一起对在数据可视化的过程中常用的一些图表进行下总结: 条形图 【适用场景】 适用场合是二维数据集(每个数据点包括两个值x和y),但只有一个维度需要比较,用于显示一段时间内的数据变化或显示各项之间的…

thinkphp6 入门(1)--安装、路由规则、多应用模式

一、安装thinkphp6 具体参考官方文档 安装 ThinkPHP6.0完全开发手册 看云 下面仅列举重要步骤 ThinkPHP6.0的环境要求如下: PHP > 7.2.5 1. 安装Composer 2. 安装稳定版thinkphp 如果你是第一次安装的话,在命令行下面,切换到你的WE…

“R语言+遥感“水环境综合评价方法

详情点击链接:"R语言遥感"水环境综合评价方法 一:R语言 1.1 R语言特点(R语言) 1.2 安装R(R语言) 1.3 安装RStudio(R语言) (1)下载地址 &…

语言模型(language model)

文章目录 引言1. 什么是语言模型2. 语言模型的主要用途2.1 言模型-语音识别2.2 语言模型-手写识别2.3 语言模型-输入法 3. 语言模型的分类4. N-gram语言模型4.1 N-gram语言模型-平滑方法4.2 ngram代码4.3 语言模型的评价指标4.4 两类语言模型的对比 5. 神经网络语言模型6. 语言…

开发一款AR导览导航小程序多少钱?ar地图微信小程序 ar导航 源码

随着科技的不断发展,增强现实(AR)技术在不同领域展现出了巨大的潜力。AR导览小程序作为其中的一种应用形式,为用户提供了全新的观赏和学习体验。然而,开发一款高质量的AR导览小程序需要投入大量的时间、人力和技术资源…

C语言 数字在升序数组中出现的次数

目录 1.题目描述 2.题目分析 2.1遍历数组方法 2.2二分查找方法 2.3代码示例 数字在升序数组中出现的次数 这道题可以用遍历数组和二分查找来处理 1.题目描述 2.题目分析 题目中有一个关键信息,非降序数组,我们可以使用if语句来处理这个问题 if(…

记录一次Modbus通信的置位错误

老套路,一图胜千言,框图可能有点随意,后面我会解释 先描述下背景,在Modbus线程内有一个死循环,一直在读8个线圈的状态,该线程内读到的消息会直接发送给UI线程,UI线程会解析Modbus数据帧&#xf…

Hightopo 使用心得(6)- 3D场景环境配置(天空球,雾化,辉光,景深)

在前一篇文章《Hightopo 使用心得(5)- 动画的实现》中,我们将一个直升机模型放到了3D场景中。同时,还利用动画实现了让该直升机围绕山体巡逻。在这篇文章中,我们将对上一篇的场景进行一些环境上的丰富与美化。让场景更…

【排序】快速排序——为什么这个排序最快?

以从小到大的顺序进行说明。 定义 快排是Hoare在1962年(彼时的中国,是三年困难时期,好好学习建设祖国!)提出的基于二叉树结构的排序。 为什么说是基于二叉树? 因为这种排序每次选出一个基准值,…

35、下载、安装 jdk11 记录,Idea中把项目从 jdk8 换 jdk 11

之前一直用jdk8,现在改成 11的试试看 登录官网下载这个11 https://www.oracle.com/cn/java/technologies/downloads/#java11-windows 下载jdk的oracle官网 需要自己注册oracle账户 修改环境变量的 JAVA_HOME Path 路径这里原本添加8的时候有了,不…

构建高性能云原生大数据处理平台:融合人工智能优化数据分析流程

文章目录 架构要点优势与应用案例研究:基于云原生大数据平台的智能营销分析未来展望:大数据与人工智能的融合结论 🎈个人主页:程序员 小侯 🎐CSDN新晋作者 🎉欢迎 👍点赞✍评论⭐收藏 ✨收录专栏…

【MySQL系列】MySQL复合查询的学习 _ 多表查询 | 自连接 | 子查询 | 合并查询

「前言」文章内容大致是对MySQL复合查询的学习。 「归属专栏」MySQL 「主页链接」个人主页 「笔者」枫叶先生(fy) 目录 一、基本查询回顾二、多表查询三、自连接四、子查询4.1 单行子查询4.2 多行子查询4.3 多列子查询4.4 在from子句中使用子查询 五、合并查询 一、基本查询回顾…