python进行数据分析:数据预处理

news2024/11/15 15:08:34

六大数据类型 见python基本功

import numpy as np  
import pandas as pd

数据预处理

缺失值处理

float_data = pd.Series([1.2, -3.5, np.nan, 0])  
float_data
0    1.2  
1   -3.5  
2    NaN  
3    0.0  
dtype: float64

查看缺失值

float_data.isna()
0    False  
1    False  
2     True  
3    False  
dtype: bool
string_data = pd.Series(["aardvark", np.nan, None, "avocado"])  
string_data  
string_data.isna()  
float_data = pd.Series([1, 2, None], dtype='float64')  
float_data  
float_data.isna()
0    False  
1    False  
2     True  
dtype: bool

删除缺失值

data = pd.Series([1, np.nan, 3.5, np.nan, 7])  
data.dropna()
0    1.0  
2    3.5  
4    7.0  
dtype: float64
data[data.notna()]
0    1.0  
2    3.5  
4    7.0  
dtype: float64
data = pd.DataFrame([[1., 6.5, 3.], [1., np.nan, np.nan],  
                     [np.nan, np.nan, np.nan], [np.nan, 6.5, 3.]])  
print(data)  
data.dropna()
     0    1    2  
0  1.0  6.5  3.0  
1  1.0  NaN  NaN  
2  NaN  NaN  NaN  
3  NaN  6.5  3.0

|
| 0 | 1 | 2 |
| — | — | — | — |
| 0 | 1.0 | 6.5 | 3.0 |

data.dropna(how="all")##删除行全部都是缺失值

|
| 0 | 1 | 2 |
| — | — | — | — |
| 0 | 1.0 | 6.5 | 3.0 |
| 1 | 1.0 | NaN | NaN |
| 3 | NaN | 6.5 | 3.0 |

data[4] = np.nan  
data  
data.dropna(axis="columns", how="all")##删除列全部都是缺失值

|
| 0 | 1 | 2 |
| — | — | — | — |
| 0 | 1.0 | 6.5 | 3.0 |
| 1 | 1.0 | NaN | NaN |
| 2 | NaN | NaN | NaN |
| 3 | NaN | 6.5 | 3.0 |

df = pd.DataFrame(np.random.standard_normal((7, 3)))  
df.iloc[:4, 1] = np.nan  
df.iloc[:2, 2] = np.nan  
print(df)  
df.dropna()#删除含缺失值的行
          0         1         2  
0  0.476985       NaN       NaN  
1 -0.577087       NaN       NaN  
2  0.523772       NaN  1.343810  
3 -0.713544       NaN -2.370232  
4 -1.860761 -0.860757  0.560145  
5 -1.265934  0.119827 -1.063512  
6  0.332883 -2.359419 -0.199543

|
| 0 | 1 | 2 |
| — | — | — | — |
| 4 | -1.860761 | -0.860757 | 0.560145 |
| 5 | -1.265934 | 0.119827 | -1.063512 |
| 6 | 0.332883 | -2.359419 | -0.199543 |

df.dropna(thresh=2)# 删除至少有两个缺失值的行

|
| 0 | 1 | 2 |
| — | — | — | — |
| 2 | 0.523772 | NaN | 1.343810 |
| 3 | -0.713544 | NaN | -2.370232 |
| 4 | -1.860761 | -0.860757 | 0.560145 |
| 5 | -1.265934 | 0.119827 | -1.063512 |
| 6 | 0.332883 | -2.359419 | -0.199543 |

缺失值填充

df.fillna(0)##缺失值填充为0

|
| 0 | 1 | 2 |
| — | — | — | — |
| 0 | 0.476985 | 0.000000 | 0.000000 |
| 1 | -0.577087 | 0.000000 | 0.000000 |
| 2 | 0.523772 | 0.000000 | 1.343810 |
| 3 | -0.713544 | 0.000000 | -2.370232 |
| 4 | -1.860761 | -0.860757 | 0.560145 |
| 5 | -1.265934 | 0.119827 | -1.063512 |
| 6 | 0.332883 | -2.359419 | -0.199543 |

df.fillna({1: 0.5, 2: 0})#不同列填充不同缺失值

|
| 0 | 1 | 2 |
| — | — | — | — |
| 0 | 0.476985 | 0.500000 | 0.000000 |
| 1 | -0.577087 | 0.500000 | 0.000000 |
| 2 | 0.523772 | 0.500000 | 1.343810 |
| 3 | -0.713544 | 0.500000 | -2.370232 |
| 4 | -1.860761 | -0.860757 | 0.560145 |
| 5 | -1.265934 | 0.119827 | -1.063512 |
| 6 | 0.332883 | -2.359419 | -0.199543 |

df = pd.DataFrame(np.random.standard_normal((6, 3)))  
df.iloc[2:, 1] = np.nan  
df.iloc[4:, 2] = np.nan  
df

|
| 0 | 1 | 2 |
| — | — | — | — |
| 0 | -1.541996 | -0.970736 | -1.307030 |
| 1 | 0.286350 | 0.377984 | -0.753887 |
| 2 | 0.331286 | NaN | 0.069877 |
| 3 | 0.246674 | NaN | 1.004812 |
| 4 | 1.327195 | NaN | NaN |
| 5 | 0.022185 | NaN | NaN |

df.fillna(method="ffill")#向下填充

|
| 0 | 1 | 2 |
| — | — | — | — |
| 0 | -1.541996 | -0.970736 | -1.307030 |
| 1 | 0.286350 | 0.377984 | -0.753887 |
| 2 | 0.331286 | 0.377984 | 0.069877 |
| 3 | 0.246674 | 0.377984 | 1.004812 |
| 4 | 1.327195 | 0.377984 | 1.004812 |
| 5 | 0.022185 | 0.377984 | 1.004812 |

df.fillna(method="ffill", limit=2)#向下填充,限制填充数量=2

|
| 0 | 1 | 2 |
| — | — | — | — |
| 0 | -1.541996 | -0.970736 | -1.307030 |
| 1 | 0.286350 | 0.377984 | -0.753887 |
| 2 | 0.331286 | 0.377984 | 0.069877 |
| 3 | 0.246674 | 0.377984 | 1.004812 |
| 4 | 1.327195 | NaN | 1.004812 |
| 5 | 0.022185 | NaN | 1.004812 |

data = pd.Series([1., np.nan, 3.5, np.nan, 7])  
data.fillna(data.mean())#以平均值填充
0    1.000000  
1    3.833333  
2    3.500000  
3    3.833333  
4    7.000000  
dtype: float64

重复值处理

data = pd.DataFrame({"k1": ["one", "two"] * 3 + ["two"],  
                     "k2": [1, 1, 2, 3, 3, 4, 4]})  
data

|
| k1 | k2 |
| — | — | — |
| 0 | one | 1 |
| 1 | two | 1 |
| 2 | one | 2 |
| 3 | two | 3 |
| 4 | one | 3 |
| 5 | two | 4 |
| 6 | two | 4 |

查看是否存在重复值

data.duplicated()
0    False  
1    False  
2    False  
3    False  
4    False  
5    False  
6     True  
dtype: bool

删除重复值

data.drop_duplicates()

|
| k1 | k2 |
| — | — | — |
| 0 | one | 1 |
| 1 | two | 1 |
| 2 | one | 2 |
| 3 | two | 3 |
| 4 | one | 3 |
| 5 | two | 4 |

data["v1"] = range(7)  
data

|
| k1 | k2 | v1 |
| — | — | — | — |
| 0 | one | 1 | 0 |
| 1 | two | 1 | 1 |
| 2 | one | 2 | 2 |
| 3 | two | 3 | 3 |
| 4 | one | 3 | 4 |
| 5 | two | 4 | 5 |
| 6 | two | 4 | 6 |

data.drop_duplicates(subset=["k1"])#只要k1列有重复值就去重,保留第一行

|
| k1 | k2 | v1 |
| — | — | — | — |
| 0 | one | 1 | 0 |
| 1 | two | 1 | 1 |

data.drop_duplicates(["k1", "k2"], keep="last")#只要k1&k2有重复值就去重,保留最后一行

|
| k1 | k2 | v1 |
| — | — | — | — |
| 0 | one | 1 | 0 |
| 1 | two | 1 | 1 |
| 2 | one | 2 | 2 |
| 3 | two | 3 | 3 |
| 4 | one | 3 | 4 |
| 6 | two | 4 | 6 |

函数映射

data = pd.DataFrame({"food": ["bacon", "pulled pork", "bacon",  
                              "pastrami", "corned beef", "bacon",  
                              "pastrami", "honey ham", "nova lox"],  
                     "ounces": [4, 3, 12, 6, 7.5, 8, 3, 5, 6]})  
data

|
| food | ounces |
| — | — | — |
| 0 | bacon | 4.0 |
| 1 | pulled pork | 3.0 |
| 2 | bacon | 12.0 |
| 3 | pastrami | 6.0 |
| 4 | corned beef | 7.5 |
| 5 | bacon | 8.0 |
| 6 | pastrami | 3.0 |
| 7 | honey ham | 5.0 |
| 8 | nova lox | 6.0 |

map()将字典中的key映射为value

meat_to_animal = {  
  "bacon": "pig",  
  "pulled pork": "pig",  
  "pastrami": "cow",  
  "corned beef": "cow",  
  "honey ham": "pig",  
  "nova lox": "salmon"  
}
data["animal"] = data["food"].map(meat_to_animal)  
data

|
| food | ounces | animal |
| — | — | — | — |
| 0 | bacon | 4.0 | pig |
| 1 | pulled pork | 3.0 | pig |
| 2 | bacon | 12.0 | pig |
| 3 | pastrami | 6.0 | cow |
| 4 | corned beef | 7.5 | cow |
| 5 | bacon | 8.0 | pig |
| 6 | pastrami | 3.0 | cow |
| 7 | honey ham | 5.0 | pig |
| 8 | nova lox | 6.0 | salmon |

def get_animal(x):  
    return meat_to_animal[x]  
data["food"].map(get_animal)
0       pig  
1       pig  
2       pig  
3       cow  
4       cow  
5       pig  
6       cow  
7       pig  
8    salmon  
Name: food, dtype: object

替换

data = pd.Series([1., -999., 2., -999., -1000., 3.])  
data
0       1.0  
1    -999.0  
2       2.0  
3    -999.0  
4   -1000.0  
5       3.0  
dtype: float64

单值替换

data.replace(-999, np.nan)#将-999替换为缺失值
0       1.0  
1       NaN  
2       2.0  
3       NaN  
4   -1000.0  
5       3.0  
dtype: float64

多值替换

data.replace([-999, -1000], np.nan)#将-999&-1000替换为缺失值
0    1.0  
1    NaN  
2    2.0  
3    NaN  
4    NaN  
5    3.0  
dtype: float64
data.replace([-999, -1000], [np.nan, 0])#将-999替换为缺失值,-1000替换为0
0    1.0  
1    NaN  
2    2.0  
3    NaN  
4    0.0  
5    3.0  
dtype: float64
data.replace({-999: np.nan, -1000: 0})#将-999替换为缺失值,-1000替换为0
0    1.0  
1    NaN  
2    2.0  
3    NaN  
4    0.0  
5    3.0  
dtype: float64
data = pd.DataFrame(np.arange(12).reshape((3, 4)),  
                    index=["Ohio", "Colorado", "New York"],  
                    columns=["one", "two", "three", "four"])
def transform(x):  
    return x[:4].upper()  
  
data.index.map(transform)
Index(['OHIO', 'COLO', 'NEW '], dtype='object')
data.index = data.index.map(transform)  
data

|
| one | two | three | four |
| — | — | — | — | — |
| OHIO | 0 | 1 | 2 | 3 |
| COLO | 4 | 5 | 6 | 7 |
| NEW | 8 | 9 | 10 | 11 |

重命名rename

data.rename(index=str.title, columns=str.upper)

|
| ONE | TWO | THREE | FOUR |
| — | — | — | — | — |
| Ohio | 0 | 1 | 2 | 3 |
| Colo | 4 | 5 | 6 | 7 |
| New | 8 | 9 | 10 | 11 |

data.rename(index={"OHIO": "INDIANA"},  
            columns={"three": "peekaboo"})

|
| one | two | peekaboo | four |
| — | — | — | — | — |
| INDIANA | 0 | 1 | 2 | 3 |
| COLO | 4 | 5 | 6 | 7 |
| NEW | 8 | 9 | 10 | 11 |

数据分箱pd.cut&pd.qcut

  • • pd.cut() 将指定序列 x,按指定数量等间距的划分(根据值本身而不是这些值的频率选择均匀分布的bins),或按照指定间距划分

  • • pd.qcut() 将指定序列 x,划分为 q 个区间,使落在每个区间的记录数一致

ages = [20, 22, 25, 27, 21, 23, 37, 31, 61, 45, 41, 32]
bins = [18, 25, 35, 60, 100]  
age_categories = pd.cut(ages, bins)  
age_categories
[(18, 25], (18, 25], (18, 25], (25, 35], (18, 25], ..., (25, 35], (60, 100], (35, 60], (35, 60], (25, 35]]  
Length: 12  
Categories (4, interval[int64, right]): [(18, 25] < (25, 35] < (35, 60] < (60, 100]]
age_categories.codes  
age_categories.categories  
age_categories.categories[0]  
pd.value_counts(age_categories)
(18, 25]     5  
(25, 35]     3  
(35, 60]     3  
(60, 100]    1  
dtype: int64
pd.cut(ages, bins, right=False)
[[18, 25), [18, 25), [25, 35), [25, 35), [18, 25), ..., [25, 35), [60, 100), [35, 60), [35, 60), [25, 35)]  
Length: 12  
Categories (4, interval[int64, left]): [[18, 25) < [25, 35) < [35, 60) < [60, 100)]
group_names = ["Youth", "YoungAdult", "MiddleAged", "Senior"]  
pd.cut(ages, bins, labels=group_names)
['Youth', 'Youth', 'Youth', 'YoungAdult', 'Youth', ..., 'YoungAdult', 'Senior', 'MiddleAged', 'MiddleAged', 'YoungAdult']  
Length: 12  
Categories (4, object): ['Youth' < 'YoungAdult' < 'MiddleAged' < 'Senior']
data = np.random.uniform(size=20)  
pd.cut(data, 4, precision=2)
[(0.32, 0.53], (0.74, 0.95], (0.74, 0.95], (0.53, 0.74], (0.11, 0.32], ..., (0.74, 0.95], (0.11, 0.32], (0.74, 0.95], (0.32, 0.53], (0.74, 0.95]]  
Length: 20  
Categories (4, interval[float64, right]): [(0.11, 0.32] < (0.32, 0.53] < (0.53, 0.74] < (0.74, 0.95]]
data = np.random.standard_normal(1000)  
quartiles = pd.qcut(data, 4, precision=2)  
quartiles  
pd.value_counts(quartiles)
(-2.96, -0.69]     250  
(-0.69, -0.032]    250  
(-0.032, 0.61]     250  
(0.61, 3.93]       250  
dtype: int64
pd.qcut(data, [0, 0.1, 0.5, 0.9, 1.]).value_counts()
(-2.9499999999999997, -1.187]    100  
(-1.187, -0.0321]                400  
(-0.0321, 1.287]                 400  
(1.287, 3.928]                   100  
dtype: int64
data = pd.DataFrame(np.random.standard_normal((1000, 4)))  
data.describe()

|
| 0 | 1 | 2 | 3 |
| — | — | — | — | — |
| count | 1000.000000 | 1000.000000 | 1000.000000 | 1000.000000 |
| mean | -0.047439 | 0.046069 | 0.024366 | -0.006350 |
| std | 0.997187 | 0.998359 | 1.008925 | 0.993665 |
| min | -3.428254 | -3.645860 | -3.184377 | -3.745356 |
| 25% | -0.743886 | -0.599807 | -0.612162 | -0.697084 |
| 50% | -0.086309 | 0.043663 | -0.013609 | -0.026381 |
| 75% | 0.624413 | 0.746527 | 0.690847 | 0.694459 |
| max | 3.366626 | 2.653656 | 3.525865 | 2.735527 |

col = data[2]  
col[col.abs() > 3]
55     3.260383  
230   -3.056990  
317   -3.184377  
777    3.525865  
Name: 2, dtype: float64
data[(data.abs() > 3).any(axis="columns")]

|
| 0 | 1 | 2 | 3 |
| — | — | — | — | — |
| 36 | -2.315555 | 0.457246 | -0.025907 | -3.399312 |
| 55 | 0.050188 | 1.951312 | 3.260383 | 0.963301 |
| 131 | 0.146326 | 0.508391 | -0.196713 | -3.745356 |
| 230 | -0.293333 | -0.242459 | -3.056990 | 1.918403 |
| 254 | -3.428254 | -0.296336 | -0.439938 | -0.867165 |
| 317 | 0.275144 | 1.179227 | -3.184377 | 1.369891 |
| 539 | -0.362528 | -3.548824 | 1.553205 | -2.186301 |
| 631 | 3.366626 | -2.372214 | 0.851010 | 1.332846 |
| 777 | -0.658090 | -0.207434 | 3.525865 | 0.283070 |
| 798 | 0.599947 | -3.645860 | 0.255475 | -0.549574 |

data[data.abs() > 3] = np.sign(data) * 3  
data.describe()

|
| 0 | 1 | 2 | 3 |
| — | — | — | — | — |
| count | 1000.000000 | 1000.000000 | 1000.000000 | 1000.000000 |
| mean | -0.047378 | 0.047263 | 0.023821 | -0.005206 |
| std | 0.994634 | 0.994342 | 1.005685 | 0.989845 |
| min | -3.000000 | -3.000000 | -3.000000 | -3.000000 |
| 25% | -0.743886 | -0.599807 | -0.612162 | -0.697084 |
| 50% | -0.086309 | 0.043663 | -0.013609 | -0.026381 |
| 75% | 0.624413 | 0.746527 | 0.690847 | 0.694459 |
| max | 3.000000 | 2.653656 | 3.000000 | 2.735527 |

np.sign(data).head()

|
| 0 | 1 | 2 | 3 |
| — | — | — | — | — |
| 0 | -1.0 | 1.0 | -1.0 | 1.0 |
| 1 | -1.0 | 1.0 | -1.0 | 1.0 |
| 2 | -1.0 | -1.0 | -1.0 | -1.0 |
| 3 | -1.0 | 1.0 | 1.0 | -1.0 |
| 4 | 1.0 | 1.0 | 1.0 | -1.0 |

随机重排列

df = pd.DataFrame(np.arange(5 * 7).reshape((5, 7)))  
df  
sampler = np.random.permutation(5)#permutation:产生0到n-1的所有整数的随机排列  
sampler
array([2, 4, 3, 0, 1])
df.take(sampler)#行随机排列

|
| 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| — | — | — | — | — | — | — | — |
| 2 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| 4 | 28 | 29 | 30 | 31 | 32 | 33 | 34 |
| 3 | 21 | 22 | 23 | 24 | 25 | 26 | 27 |
| 0 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| 1 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |

df.iloc[sampler]

|
| 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| — | — | — | — | — | — | — | — |
| 2 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| 4 | 28 | 29 | 30 | 31 | 32 | 33 | 34 |
| 3 | 21 | 22 | 23 | 24 | 25 | 26 | 27 |
| 0 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| 1 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |

column_sampler = np.random.permutation(7)  
column_sampler  
df.take(column_sampler, axis="columns")#列随机排列

|
| 6 | 2 | 1 | 3 | 4 | 0 | 5 |
| — | — | — | — | — | — | — | — |
| 0 | 6 | 2 | 1 | 3 | 4 | 0 | 5 |
| 1 | 13 | 9 | 8 | 10 | 11 | 7 | 12 |
| 2 | 20 | 16 | 15 | 17 | 18 | 14 | 19 |
| 3 | 27 | 23 | 22 | 24 | 25 | 21 | 26 |
| 4 | 34 | 30 | 29 | 31 | 32 | 28 | 33 |

随机采样

df.sample(n=3)# n指定采样的个数

|
| 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| — | — | — | — | — | — | — | — |
| 2 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| 4 | 28 | 29 | 30 | 31 | 32 | 33 | 34 |
| 1 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |

choices = pd.Series([5, 7, -1, 6, 4])  
choices.sample(n=10, replace=True)
0    5  
1    7  
0    5  
0    5  
2   -1  
4    4  
2   -1  
2   -1  
0    5  
4    4  
dtype: int64

哑变量编码

df = pd.DataFrame({"key": ["b", "b", "a", "c", "a", "b"],  
                   "data1": range(6)})  
df

|
| key | data1 |
| — | — | — |
| 0 | b | 0 |
| 1 | b | 1 |
| 2 | a | 2 |
| 3 | c | 3 |
| 4 | a | 4 |
| 5 | b | 5 |

pd.get_dummies(df["key"])

|
| a | b | c |
| — | — | — | — |
| 0 | 0 | 1 | 0 |
| 1 | 0 | 1 | 0 |
| 2 | 1 | 0 | 0 |
| 3 | 0 | 0 | 1 |
| 4 | 1 | 0 | 0 |
| 5 | 0 | 1 | 0 |

dummies = pd.get_dummies(df["key"], prefix="key")##前缀为key  
df_with_dummy = df[["data1"]].join(dummies)#合并数据集  
df_with_dummy

|
| data1 | key_a | key_b | key_c |
| — | — | — | — | — |
| 0 | 0 | 0 | 1 | 0 |
| 1 | 1 | 0 | 1 | 0 |
| 2 | 2 | 1 | 0 | 0 |
| 3 | 3 | 0 | 0 | 1 |
| 4 | 4 | 1 | 0 | 0 |
| 5 | 5 | 0 | 1 | 0 |

mnames = ["movie_id", "title", "genres"]  
movies = pd.read_table("datasets/movielens/movies.dat", sep="::",  
                       header=None, names=mnames, engine="python")  
movies[:10]

|
| movie_id | title | genres |
| — | — | — | — |
| 0 | 1 | Toy Story (1995) | Animation|Children’s|Comedy |
| 1 | 2 | Jumanji (1995) | Adventure|Children’s|Fantasy |
| 2 | 3 | Grumpier Old Men (1995) | Comedy|Romance |
| 3 | 4 | Waiting to Exhale (1995) | Comedy|Drama |
| 4 | 5 | Father of the Bride Part II (1995) | Comedy |
| 5 | 6 | Heat (1995) | Action|Crime|Thriller |
| 6 | 7 | Sabrina (1995) | Comedy|Romance |
| 7 | 8 | Tom and Huck (1995) | Adventure|Children’s |
| 8 | 9 | Sudden Death (1995) | Action |
| 9 | 10 | GoldenEye (1995) | Action|Adventure|Thriller |

dummies = movies["genres"].str.get_dummies("|")##将一列中以|分割的字段变成哑变量  
dummies.iloc[:10, :6]

|
| Action | Adventure | Animation | Children’s | Comedy | Crime |
| — | — | — | — | — | — | — |
| 0 | 0 | 0 | 1 | 1 | 1 | 0 |
| 1 | 0 | 1 | 0 | 1 | 0 | 0 |
| 2 | 0 | 0 | 0 | 0 | 1 | 0 |
| 3 | 0 | 0 | 0 | 0 | 1 | 0 |
| 4 | 0 | 0 | 0 | 0 | 1 | 0 |
| 5 | 1 | 0 | 0 | 0 | 0 | 1 |
| 6 | 0 | 0 | 0 | 0 | 1 | 0 |
| 7 | 0 | 1 | 0 | 1 | 0 | 0 |
| 8 | 1 | 0 | 0 | 0 | 0 | 0 |
| 9 | 1 | 1 | 0 | 0 | 0 | 0 |

movies_windic = movies.join(dummies.add_prefix("Genre_"))  
movies_windic.iloc[0]
movie_id                                       1  
title                           Toy Story (1995)  
genres               Animation|Children's|Comedy  
Genre_Action                                   0  
Genre_Adventure                                0  
Genre_Animation                                1  
Genre_Children's                               1  
Genre_Comedy                                   1  
Genre_Crime                                    0  
Genre_Documentary                              0  
Genre_Drama                                    0  
Genre_Fantasy                                  0  
Genre_Film-Noir                                0  
Genre_Horror                                   0  
Genre_Musical                                  0  
Genre_Mystery                                  0  
Genre_Romance                                  0  
Genre_Sci-Fi                                   0  
Genre_Thriller                                 0  
Genre_War                                      0  
Genre_Western                                  0  
Name: 0, dtype: object
np.random.seed(12345) # to make the example repeatable  
values = np.random.uniform(size=10)  
values  
bins = [0, 0.2, 0.4, 0.6, 0.8, 1]  
pd.get_dummies(pd.cut(values, bins))

|
| (0.0, 0.2] | (0.2, 0.4] | (0.4, 0.6] | (0.6, 0.8] | (0.8, 1.0] |
| — | — | — | — | — | — |
| 0 | 0 | 0 | 0 | 0 | 1 |
| 1 | 0 | 1 | 0 | 0 | 0 |
| 2 | 1 | 0 | 0 | 0 | 0 |
| 3 | 0 | 1 | 0 | 0 | 0 |
| 4 | 0 | 0 | 1 | 0 | 0 |
| 5 | 0 | 0 | 1 | 0 | 0 |
| 6 | 0 | 0 | 0 | 0 | 1 |
| 7 | 0 | 0 | 0 | 1 | 0 |
| 8 | 0 | 0 | 0 | 1 | 0 |
| 9 | 0 | 0 | 0 | 1 | 0 |

正则表达式

s = pd.Series([1, 2, 3, None])  
s  
s.dtype
dtype('float64')
s = pd.Series([1, 2, 3, None], dtype=pd.Int64Dtype())  
s  
s.isna()  
s.dtype
Int64Dtype()
s[3]  
s[3] is pd.NA
True
s = pd.Series([1, 2, 3, None], dtype="Int64")
s = pd.Series(['one', 'two', None, 'three'], dtype=pd.StringDtype())  
s
0      one  
1      two  
2     <NA>  
3    three  
dtype: string
df = pd.DataFrame({"A": [1, 2, None, 4],  
                   "B": ["one", "two", "three", None],  
                   "C": [False, None, False, True]})  
df  
df["A"] = df["A"].astype("Int64")  
df["B"] = df["B"].astype("string")  
df["C"] = df["C"].astype("boolean")  
df

|
| A | B | C |
| — | — | — | — |
| 0 | 1 | one | False |
| 1 | 2 | two | |
| 2 | | three | False |
| 3 | 4 | | True |

val = "a,b,  guido"  
val.split(",")
['a', 'b', '  guido']
pieces = [x.strip() for x in val.split(",")]  
pieces
['a', 'b', 'guido']
first, second, third = pieces  
first + "::" + second + "::" + third
'a::b::guido'
"::".join(pieces)
'a::b::guido'
"guido" in val  
val.index(",")  
val.find(":")
-1
val.index(":")
---------------------------------------------------------------------------  
  
ValueError                                Traceback (most recent call last)  
  
~\AppData\Local\Temp\ipykernel_20552\2601145560.py in <module>  
----> 1 val.index(":")  
  
  
ValueError: substring not found
val.count(",")
2
val.replace(",", "::")  
val.replace(",", "")
'ab  guido'
import re  
text = "foo    bar\t baz  \tqux"  
re.split(r"\s+", text)
['foo', 'bar', 'baz', 'qux']
regex = re.compile(r"\s+")  
regex.split(text)
['foo', 'bar', 'baz', 'qux']
regex.findall(text)
['    ', '\t ', '  \t']
text = """Dave dave@google.com  
Steve steve@gmail.com  
Rob rob@gmail.com  
Ryan ryan@yahoo.com"""  
pattern = r"[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,4}"  
  
regex = re.compile(pattern, flags=re.IGNORECASE)
regex.findall(text)
['dave@google.com', 'steve@gmail.com', 'rob@gmail.com', 'ryan@yahoo.com']
m = regex.search(text)  
m  
text[m.start():m.end()]
'dave@google.com'
print(regex.match(text))
None
print(regex.sub("REDACTED", text))
Dave REDACTED  
Steve REDACTED  
Rob REDACTED  
Ryan REDACTED
pattern = r"([A-Z0-9._%+-]+)@([A-Z0-9.-]+)\.([A-Z]{2,4})"  
regex = re.compile(pattern, flags=re.IGNORECASE)
m = regex.match("wesm@bright.net")  
m.groups()
('wesm', 'bright', 'net')
regex.findall(text)
[('dave', 'google', 'com'),  
 ('steve', 'gmail', 'com'),  
 ('rob', 'gmail', 'com'),  
 ('ryan', 'yahoo', 'com')]
print(regex.sub(r"Username: \1, Domain: \2, Suffix: \3", text))
Dave Username: dave, Domain: google, Suffix: com  
Steve Username: steve, Domain: gmail, Suffix: com  
Rob Username: rob, Domain: gmail, Suffix: com  
Ryan Username: ryan, Domain: yahoo, Suffix: com
data = {"Dave": "dave@google.com", "Steve": "steve@gmail.com",  
        "Rob": "rob@gmail.com", "Wes": np.nan}  
data = pd.Series(data)  
data  
data.isna()
Dave     False  
Steve    False  
Rob      False  
Wes       True  
dtype: bool
data.str.contains("gmail")
Dave     False  
Steve     True  
Rob       True  
Wes        NaN  
dtype: object
data_as_string_ext = data.astype('string')  
data_as_string_ext  
data_as_string_ext.str.contains("gmail")
Dave     False  
Steve     True  
Rob       True  
Wes       <NA>  
dtype: boolean
pattern = r"([A-Z0-9._%+-]+)@([A-Z0-9.-]+)\.([A-Z]{2,4})"  
data.str.findall(pattern, flags=re.IGNORECASE)
Dave     [(dave, google, com)]  
Steve    [(steve, gmail, com)]  
Rob        [(rob, gmail, com)]  
Wes                        NaN  
dtype: object
matches = data.str.findall(pattern, flags=re.IGNORECASE).str[0]  
matches  
matches.str.get(1)
Dave     google  
Steve     gmail  
Rob       gmail  
Wes         NaN  
dtype: object
data.str[:5]
Dave     dave@  
Steve    steve  
Rob      rob@g  
Wes        NaN  
dtype: object
data.str.extract(pattern, flags=re.IGNORECASE)

|
| 0 | 1 | 2 |
| — | — | — | — |
| Dave | dave | google | com |
| Steve | steve | gmail | com |
| Rob | rob | gmail | com |
| Wes | NaN | NaN | NaN |

values = pd.Series(['apple', 'orange', 'apple',  
                    'apple'] * 2)  
values  
pd.unique(values)  
pd.value_counts(values)
apple     6  
orange    2  
dtype: int64
values = pd.Series([0, 1, 0, 0] * 2)  
dim = pd.Series(['apple', 'orange'])  
values  
dim
0     apple  
1    orange  
dtype: object
dim.take(values)
0     apple  
1    orange  
0     apple  
0     apple  
0     apple  
1    orange  
0     apple  
0     apple  
dtype: object
fruits = ['apple', 'orange', 'apple', 'apple'] * 2  
N = len(fruits)  
rng = np.random.default_rng(seed=12345)  
df = pd.DataFrame({'fruit': fruits,  
                   'basket_id': np.arange(N),  
                   'count': rng.integers(3, 15, size=N),  
                   'weight': rng.uniform(0, 4, size=N)},  
                  columns=['basket_id', 'fruit', 'count', 'weight'])  
df

|
| basket_id | fruit | count | weight |
| — | — | — | — | — |
| 0 | 0 | apple | 11 | 1.564438 |
| 1 | 1 | orange | 5 | 1.331256 |
| 2 | 2 | apple | 12 | 2.393235 |
| 3 | 3 | apple | 6 | 0.746937 |
| 4 | 4 | apple | 5 | 2.691024 |
| 5 | 5 | orange | 12 | 3.767211 |
| 6 | 6 | apple | 10 | 0.992983 |
| 7 | 7 | apple | 11 | 3.795525 |

fruit_cat = df['fruit'].astype('category')  
fruit_cat
0     apple  
1    orange  
2     apple  
3     apple  
4     apple  
5    orange  
6     apple  
7     apple  
Name: fruit, dtype: category  
Categories (2, object): ['apple', 'orange']
c = fruit_cat.array  
type(c)
pandas.core.arrays.categorical.Categorical
c.categories  
c.codes
array([0, 1, 0, 0, 0, 1, 0, 0], dtype=int8)
dict(enumerate(c.categories))
{0: 'apple', 1: 'orange'}
df['fruit'] = df['fruit'].astype('category')  
df["fruit"]
0     apple  
1    orange  
2     apple  
3     apple  
4     apple  
5    orange  
6     apple  
7     apple  
Name: fruit, dtype: category  
Categories (2, object): ['apple', 'orange']
my_categories = pd.Categorical(['foo', 'bar', 'baz', 'foo', 'bar'])  
my_categories
['foo', 'bar', 'baz', 'foo', 'bar']  
Categories (3, object): ['bar', 'baz', 'foo']
categories = ['foo', 'bar', 'baz']  
codes = [0, 1, 2, 0, 0, 1]  
my_cats_2 = pd.Categorical.from_codes(codes, categories)  
my_cats_2
['foo', 'bar', 'baz', 'foo', 'foo', 'bar']  
Categories (3, object): ['foo', 'bar', 'baz']
ordered_cat = pd.Categorical.from_codes(codes, categories,  
                                        ordered=True)  
ordered_cat
['foo', 'bar', 'baz', 'foo', 'foo', 'bar']  
Categories (3, object): ['foo' < 'bar' < 'baz']
my_cats_2.as_ordered()
['foo', 'bar', 'baz', 'foo', 'foo', 'bar']  
Categories (3, object): ['foo' < 'bar' < 'baz']
rng = np.random.default_rng(seed=12345)  
draws = rng.standard_normal(1000)  
draws[:5]
array([-1.4238,  1.2637, -0.8707, -0.2592, -0.0753])
bins = pd.qcut(draws, 4)  
bins
[(-3.121, -0.675], (0.687, 3.211], (-3.121, -0.675], (-0.675, 0.0134], (-0.675, 0.0134], ..., (0.0134, 0.687], (0.0134, 0.687], (-0.675, 0.0134], (0.0134, 0.687], (-0.675, 0.0134]]  
Length: 1000  
Categories (4, interval[float64, right]): [(-3.121, -0.675] < (-0.675, 0.0134] < (0.0134, 0.687] < (0.687, 3.211]]
bins = pd.qcut(draws, 4, labels=['Q1', 'Q2', 'Q3', 'Q4'])  
bins  
bins.codes[:10]
array([0, 3, 0, 1, 1, 0, 0, 2, 2, 0], dtype=int8)
bins = pd.Series(bins, name='quartile')  
results = (pd.Series(draws)  
           .groupby(bins)  
           .agg(['count', 'min', 'max'])  
           .reset_index())  
results

|
| quartile | count | min | max |
| — | — | — | — | — |
| 0 | Q1 | 250 | -3.119609 | -0.678494 |
| 1 | Q2 | 250 | -0.673305 | 0.008009 |
| 2 | Q3 | 250 | 0.018753 | 0.686183 |
| 3 | Q4 | 250 | 0.688282 | 3.211418 |

results['quartile']
0    Q1  
1    Q2  
2    Q3  
3    Q4  
Name: quartile, dtype: category  
Categories (4, object): ['Q1' < 'Q2' < 'Q3' < 'Q4']
N = 10_000_000  
labels = pd.Series(['foo', 'bar', 'baz', 'qux'] * (N // 4))
categories = labels.astype('category')
labels.memory_usage(deep=True)  
categories.memory_usage(deep=True)
10000540
%time _ = labels.astype('category')
Wall time: 560 ms
%timeit labels.value_counts()  
%timeit categories.value_counts()
366 ms ± 9.3 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)  
67.6 ms ± 2.89 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
s = pd.Series(['a', 'b', 'c', 'd'] * 2)  
cat_s = s.astype('category')  
cat_s
0    a  
1    b  
2    c  
3    d  
4    a  
5    b  
6    c  
7    d  
dtype: category  
Categories (4, object): ['a', 'b', 'c', 'd']
cat_s.cat.codes  
cat_s.cat.categories
Index(['a', 'b', 'c', 'd'], dtype='object')
actual_categories = ['a', 'b', 'c', 'd', 'e']  
cat_s2 = cat_s.cat.set_categories(actual_categories)  
cat_s2
0    a  
1    b  
2    c  
3    d  
4    a  
5    b  
6    c  
7    d  
dtype: category  
Categories (5, object): ['a', 'b', 'c', 'd', 'e']
cat_s.value_counts()  
cat_s2.value_counts()
a    2  
b    2  
c    2  
d    2  
e    0  
dtype: int64
cat_s3 = cat_s[cat_s.isin(['a', 'b'])]  
cat_s3  
cat_s3.cat.remove_unused_categories()
0    a  
1    b  
4    a  
5    b  
dtype: category  
Categories (2, object): ['a', 'b']
cat_s = pd.Series(['a', 'b', 'c', 'd'] * 2, dtype='category')
pd.get_dummies(cat_s)

|
| a | b | c | d |
| — | — | — | — | — |
| 0 | 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 0 | 0 |
| 2 | 0 | 0 | 1 | 0 |
| 3 | 0 | 0 | 0 | 1 |
| 4 | 1 | 0 | 0 | 0 |
| 5 | 0 | 1 | 0 | 0 |
| 6 | 0 | 0 | 1 | 0 |
| 7 | 0 | 0 | 0 | 1

|

---------------------------END---------------------------

题外话

在这里插入图片描述

感兴趣的小伙伴,赠送全套Python学习资料,包含面试题、简历资料等具体看下方。

👉CSDN大礼包🎁:全网最全《Python学习资料》免费赠送🆓!(安全链接,放心点击)

一、Python所有方向的学习路线

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

img
img

二、Python必备开发工具

工具都帮大家整理好了,安装就可直接上手!img

三、最新Python学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。

img

四、Python视频合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

img

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。img

六、面试宝典

在这里插入图片描述

在这里插入图片描述

简历模板在这里插入图片描述

👉CSDN大礼包🎁:全网最全《Python学习资料》免费赠送🆓!(安全链接,放心点击)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/929645.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

mysql57、mysql80 目录结构 之 Windows

查看mysql 数据存储的位置 /bin&#xff1a;存储可执行文件&#xff0c;主要包含客户端和服务端启动程序&#xff0c;如mysql.exe、mysqld.exe等 /docs&#xff1a;存放一些文档 /include&#xff1a;用于放置一些头文件&#xff0c;如&#xff1a;mysql.h、mysqld_error.h 等 …

Android SDK 上手指南||第七章 Java应用程序编程

第七章 Java应用程序编程 如果大家已经对Java非常熟悉&#xff0c;那么不妨直接忽略这部分内容。如果大家的技巧还存在局限或者对Java这种语言只闻其名&#xff0c;那么本文将为各位解答很多在Android开发当中经常遇到的问题。需要注意的是&#xff0c;这篇文章并不能作为Java…

容器技术,1. Docker,2. Kubernetes(K8s):

目录 容器技术 1. Docker&#xff1a; 2. Kubernetes&#xff08;K8s&#xff09;&#xff1a; Docker和Kubernetes 容器的主要应用场景有哪些&#xff1f; 容器技术 有效的将单个操作系统的资源划分到孤立的组中&#xff0c;以便更好的在孤立的组之间平衡有冲突的资源使…

【云原生】Docker的数据管理(数据卷、容器互联)

目录 一、数据卷&#xff08;容器与宿主机之间数据共享&#xff09; 二、数据卷容器&#xff08;容器与容器之间数据共享&#xff09; 三、 容器互联&#xff08;使用centos镜像&#xff09; 总结 用户在使用Docker的过程中&#xff0c;往往需要能查看容器内应用产生的数据…

Spring(aop介绍,底层实现,jdk代理,cglib代理)

02-aop简介-aop的作用及其优势_哔哩哔哩_bilibili 122 1、Spring的aop介绍 1.1aop是一种技术&#xff0c;aop是在运行之间执行的&#xff0c;他可以完成程序功能之间的松耦合&#xff0c;动态代理的作用也等同于Aop的作用&#xff1a;他提供了相应的封装&#xff0c;Aop是面向…

UG\NX二次开发 使用BlockUI设计对话框时,如何设置默认的开发语言?

文章作者:里海 来源网站:王牌飞行员_里海_里海NX二次开发3000例,C\C++,Qt-CSDN博客 简介: NX二次开发使用BlockUI设计对话框时,如何设置默认的代码语言? 效果: 方法: 依次打开“文件”->“实用工具”->“用户默认设置”->“用户界面”->“操作记录”->“…

如何进行微服务的集成测试

集成测试的概念 说到集成测试&#xff0c;相信每个测试工程师并不陌生&#xff0c;它不是一个崭新的概念&#xff0c;通过维基百科定义可以知道它在传统软件测试中的含义。 Integration testing (sometimes called integration and testing, abbreviated I&T) is the pha…

【C++精华铺】9.STL string

目录 1. string类的优势 2. string类的常用接口 2.1 常用构造 1. 空串构造&#xff1a;string(); 2. C串构造&#xff1a;string(const char* s); 3. 拷贝构造&#xff1a;string(const string& str); 4. 字符填充构造&#xff1a;string(size_t n, char c); 5. 迭代…

GDFN模块(restormer)

为了对特征进行变换&#xff0c;常规的前馈神经网络独立地在每个像素位置进行相同的操作。它使用两个1x1卷积层&#xff0c;一个用来扩展特征通道&#xff08;通常4倍&#xff09;&#xff0c;第二个用来将特征通道减少到原来的输入维度。在隐藏层中加入非线性。 GDFN做了两个…

嵌入式实时操作系统的设计与开发

时钟管理 在RTOS中&#xff0c;时钟具有非常重要的作用&#xff0c;通过时钟可实现延时任务、周期性触发任务执行、任务有限等待的计时。 大多数嵌入式系统有两种时钟源&#xff0c;分别为实时时钟RTC&#xff08;Real-Time Clock&#xff09;和定时器/计数器。 实时时钟一般…

jvm——内存模型

1.java内存模型 1.1 原子性 1.2 问题分析 这里与局部变量自增不同&#xff0c;局部变量调用iinc是在局部变量表槽位上进行自增。 静态变量是在操作数栈自增。 这里的主内存和工作内存时再JMM里的说法。 因为操作系统是时间片切换的多个线程轮流使用CPU. 1.3解决方法 JMM中…

2023京东酒类市场数据分析(京东数据开放平台)

根据鲸参谋平台的数据统计&#xff0c;今年7月份京东平台酒类环比集体下滑&#xff0c;接下来我们一起来看白酒、啤酒、葡萄酒的详情数据。 首先来看白酒市场。 鲸参谋数据显示&#xff0c;7月份京东平台白酒的销量为210万&#xff0c;环比下滑约49%&#xff1b;销售额将近19…

前端需要理解的数据结构与算法知识

1 数组 1.1 集合、列表、数组的联系与区别 集合&#xff1a;由一个或多个确定的元素所构成的整体。类型不一定相同、确定、无序、互异。 列表&#xff08;又称线性列表&#xff09;&#xff1a;按照一定的线性顺序&#xff0c;排列而成的数据项的集合。类型不一定相同、有序…

opencv实现全景图像拼接

目录 部分代码展示&#xff1a; 效果演示 查看处理过程 历史记录 完整演示视频&#xff1a; 完整代码链接 部分代码展示&#xff1a; 效果演示 查看处理过程 历史记录 完整演示视频&#xff1a; 无法粘贴视频........ 完整代码链接 视频和代码都已上传百度网盘&#x…

Kafka 简介 + 学习笔记

消息队列 先说明消息队列是什么&#xff1a; 亚马逊&#xff1a; 消息队列是一种异步的服务间通信方式&#xff0c;适用于微服务架构。消息在被处理和删除之前一直存储在队列上。每条消息仅可被一位用户处理一次。消息队列可被用于分离重量级处理、缓冲或批处理工作以及缓解高…

机器学习基础之《分类算法(5)—朴素贝叶斯算法原理》

一、朴素贝叶斯算法 1、什么是朴素贝叶斯分类方法 之前用KNN算法&#xff0c;分类完直接有个结果&#xff0c;但是朴素贝叶斯分完之后会出现一些概率值&#xff0c;比如&#xff1a; 这六个类别&#xff0c;它都有一定的可能性 再比如&#xff0c;对文章进行分类&#xff1a;…

element Collapse 折叠面板 绑定事件

1. 点击面板触发事件 change <el-collapse accordion v-model"activeNames" change"handleChange"><el-collapse-item title"一致性 Consistency"><div>与现实生活一致&#xff1a;与现实生活的流程、逻辑保持一致&#xff0c…

【附安装包】Fireworks 8安装教程

软件下载 软件&#xff1a;Fireworks版本&#xff1a;8语言&#xff1a;简体中文大小&#xff1a;88.3M安装环境&#xff1a;Win11/Win10/Win8/Win7硬件要求&#xff1a;CPU2.0GHz 内存4G(或更高&#xff09;下载通道①百度网盘丨下载链接&#xff1a;https://pan.baidu.com/s…

NetMarvel机器学习促广告收益最大化,加速获客

游戏出海的竞争日益激烈&#xff0c;这并非空穴来风。 从2021年第一季度至2022年第四季度&#xff0c;iOS平台的CPI增长了88%&#xff0c;意味着厂商需要花费近两倍的钱才能获取一个新用户。与此同时数据隐私政策持续收紧&#xff0c;更加提高了营销成本。 在成本高涨的当下&…

Java 中的集合类有哪些?如何分类的?

面试回答 Java 的整个集合框架中&#xff0c;主要分为 List、Set、Queue、Stack、Map 等五种数据结构。其中&#xff0c;前四种数据结构都是单一元素的集合&#xff0c;而最后的 Map 则是以 KV 对的形式使用。 从继承关系上讲&#xff0c;List、Set、Queue都是 Collection 的子…