计算机竞赛 基于Django与深度学习的股票预测系统

news2024/11/20 0:35:07

文章目录

  • 0 前言
  • 1 课题背景
  • 2 实现效果
  • 3 Django框架
  • 4 数据整理
  • 5 模型准备和训练
  • 6 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 **基于Django与深度学习的股票预测系统 **

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:5分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

在这里插入图片描述

1 课题背景

随着经济的发展,我国的股票市场建设正不断加强,社会直接融资正获得重要发展。股票市场行情的涨落与国民经济的发展密切相关。股票作为一种资本融资和投资的工具,是一种资本的代表形式,股票市场可以让上市公司便捷地在国内和国际市场融资。个人投资者、投资机构期望通过技术手段进行投资分析,能够从股票市场获得一定相对高额的投资收益。

2 实现效果

主界面
在这里插入图片描述
详细数据查看
在这里插入图片描述
股票切换
在这里插入图片描述

相关html


DOCTYPE html>



股票预测系统title><br/> {% load static %}<br/>

3 Django框架

Django是一个基于Web的应用框架,由python编写。Web开发的基础是B/S架构,它通过前后端配合,将后台服务器的数据在浏览器上展现给前台用户的应用。Django本身是基于MVC模型,即Model(模型)+View(视图)+
Controller(控制器)设计模式,View模块和Template模块组成了它的视图部分,这种结构使动态的逻辑是剥离于静态页面处理的。
Django框架的Model层本质上是一套ORM系统,封装了大量的数据库操作API,开发人员不需要知道底层的数据库实现就可以对数据库进行增删改查等操作。Django强大的QuerySet设计能够实现非常复杂的数据库查询操作,且性能接近原生SQL语句。Django支持包括PostgreSQL、My
Sql、SQLite、Oracle在内的多种数据库。Django的路由层设计非常简洁,使得将控制层、模型层和页面模板独立开进行开发成为可能。基于Django的Web系统工程结构示意图如图所示。

在这里插入图片描述

从图中可以看到,一个完整的Django工程由数个分应用程序组成,每个分应用程序包括四个部分:

urls路由层 :决定Web系统路由结构,控制页面间的跳转和数据请求路径

在这里插入图片描述

views视图层
:业务层,主要进行逻辑操作和运算,是前端页面模板和后端数据库之间的桥梁。Django框架提供了大量的数据库操作API,开发人员甚至不需要使用SQL语句即可完成大部分的数据库操作。
在这里插入图片描述

models模型层
:Web应用连接底层数据库的关键部分,封装了数据库表结构和实现。开发人员可以在Model层按照Django的指令要求进行建表,无须使用SQL语句或者第三方建表工具进行建表。建表的过程类似于定义变量和抽象编程语言中的类,非常方便。

在这里插入图片描述

templates模板层
:HTML模板文件,后端数据会填充HTML模板,渲染之后返回给前端请求。考虑到项目周期尽可能小,尽快完成平台的搭建,项目决定采用开源的Django框架开发整个系统的Web应用层。

在这里插入图片描述
关键代码


def main():
os.environ.setdefault(‘DJANGO_SETTINGS_MODULE’, ‘ExamOnline.settings’)
try:
from django.core.management import execute_from_command_line
except ImportError as exc:
raise ImportError(
"Couldn’t import Django. Are you sure it’s installed and "
"available on your PYTHONPATH environment variable? Did you "
“forget to activate a virtual environment?”
) from exc
execute_from_command_line(sys.argv)


4 数据整理

对于LSTM来说,至少需要两步整理过程:

  • 归一化
  • 变成3D样本(样本,时间步,特征数)

对于神经网络来说,归一化至关重要。如果缺失,会无法顺利训练和学习,俗称:Train不起来。对于LSTM来说,更为重要,因为LSTM内部包含tanh函数使得输出范围在-1到1之间。这就需要我们将预测值也进行归一化,常见的做法就是直接归一化到0和1之间。

将一般的特征X和目标y变成3D,我这里提供了一个函数,输入为原始的X_train_raw,X_test_raw,y_train_raw,y_test_raw。​n_input
为需要多少步历史数据,n_output为预测多少步未来数据。


def transform_dataset(train_set, test_set, y_train, y_test, n_input, n_output):
all_data = np.vstack((train_set, test_set))
y_set = np.vstack((y_train, y_test))[:,0]
X = np.empty((1, n_input, all_data.shape[1]))
y = np.empty((1, n_output))
for i in range(all_data.shape[0] - n_input - n_output):
X_sample = all_data[i:i + n_input, :]
y_sample = y_set[i + n_input:i + n_input + n_output]
if i == 0:
X[i] = X_sample
y[i] = y_sample
else:
X = np.append(X, np.array([X_sample]), axis=0)
y = np.append(y, np.array([y_sample.T]), axis=0)
train_X = X[:train_set.shape[0] - n_input, :, :]
train_y = y[:train_set.shape[0] - n_input, :]
test_X = X[train_set.shape[0] -
n_input:all_data.shape[0] -
n_input -
n_output, :, :]
test_y = y[train_set.shape[0] -
n_input:all_data.shape[0] -
n_input -
n_output, :]
return train_X, train_y, test_X, test_y

5 模型准备和训练

Keras已经包含LSTM
网络层,调用方式和普通的神经网络没有特别大的区别,仅仅需要指定输入数据的shape。这里我们设计一个简单的神经网络,输入层为LSTM,包含20个节点,输出层为普通的Dense,损失函数采用mean_absolute_error。


n_timesteps, n_features, n_outputs = train_X.shape[1], train_X.shape[2], train_y.shape[1]
# create a model
model = Sequential()
model.add(LSTM(10, input_shape=(n_timesteps, n_features),kernel_initializer=‘glorot_uniform’,
kernel_regularizer=regularizers.l2(0.0),return_sequences=False))
#model.add(LSTM(20, input_shape=(n_timesteps, n_features),kernel_initializer=‘glorot_uniform’,
# kernel_regularizer=regularizers.l2(0.0)))

model.add(Dense(n_outputs,kernel_initializer='glorot_uniform',
                kernel_regularizer=regularizers.l2(0.0)))

model.compile(optimizer='adam', loss='mean_absolute_error')
print(model.summary())

调用fit函数对训练集进行学习。由于时间序列具有很明显的趋势,因此有必要将样本打乱。这里需要说明:我们打乱的是“样本”,不影响每个样本内在的序列关系。LSTM只会根据样本内在的序列关系(时间步)来更新自己的隐状态。


from sklearn.utils import shuffle
train_X,train_y = shuffle(train_X,train_y,random_state=42)
plt.plot(train_y)
# fit the RNN model
history = model.fit(
train_X,
train_y,
epochs=300,
batch_size=512,
validation_split=0.3)
figure = plt.Figure()
plt.plot(history.history[‘loss’],
‘b’,
label=‘Training loss’)
plt.plot(history.history[‘val_loss’],
‘r’,
label=‘Validation loss’)
plt.legend(loc=‘upper right’)
plt.xlabel(‘Epochs’)
plt.show()

查看loss曲线,确保训练已经稳定。
在这里插入图片描述

6 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/919324.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

js将搜索的关键字加颜色

js将搜索的关键字加颜色 使用正则匹配关键字并加入span标签&#xff0c;页面渲染时使用v-html渲染即可 // 文本框内容 let searchCont 测试;const reg new RegExp((${searchCont.value}), g); let data 图片保存测试A; data data.replace(reg, <span style"color:…

【N年测试总结】测试的分类

一、概述 测试的分类一般有按照测试的内容进行划分和按照测试阶段划分两种大的方式。 按测试内容划分 1、需求测试 2、单元测试 3、接口测试 4、功能测试 5、UI自动化测试 6、性能测试 7、测试开发 按测试阶段划分 1、需求测试 2、单元测试 3、集成测试 4、系统测试 5、验…

C 连接MySQL8

Linux 安装MySQL 8 请参考文章&#xff1a;Docker 安装MySQL 8 详解 Visual Studio 2022 编写C 连接MySQL 8 C源码 #include <stdio.h> #include <mysql.h> int main(void) {MYSQL mysql; //数据库句柄MYSQL_RES* res; //查询结果集MYSQL_ROW row; //记录结…

回归预测 | MATLAB实现BES-ELM秃鹰搜索优化算法优化极限学习机多输入单输出回归预测(多指标,多图)

回归预测 | MATLAB实现BES-ELM秃鹰搜索优化算法优化极限学习机多输入单输出回归预测&#xff08;多指标&#xff0c;多图&#xff09; 目录 回归预测 | MATLAB实现BES-ELM秃鹰搜索优化算法优化极限学习机多输入单输出回归预测&#xff08;多指标&#xff0c;多图&#xff09;效…

【学会动态规划】最长递增子序列的个数(28)

目录 动态规划怎么学&#xff1f; 1. 题目解析 2. 算法原理 1. 状态表示 2. 状态转移方程 3. 初始化 4. 填表顺序 5. 返回值 3. 代码编写 写在最后&#xff1a; 动态规划怎么学&#xff1f; 学习一个算法没有捷径&#xff0c;更何况是学习动态规划&#xff0c; 跟我…

Spring Boot 事务和事务传播机制

1. 为什么需要事务? 事务定义 将一组操作封装成一个执行单元 (封装到一起)&#xff0c;这一组的执行具备原子性, 那么就要么全部成功&#xff0c;要么全部失败. 为什么要用事务? 比如转账分为两个操作: 第一步操作:A 账户-100 元。 第二步操作:B账户 100 元。 如果没有事务&a…

【WinForm】WebView2-个性化浏览器-桌面程序开发详解

这是一个桌面程序上的浏览器&#xff0c;是用插件WebView2开发的浏览器桌面程序&#xff0c;功能体验堪比Edge浏览器&#xff0c;相比使用Chrome内核插件开发浏览器来说&#xff0c;还是用插件WebView2开发来得简单一些&#xff0c;接下来讲一讲实现过程。 开发之前&#xff0c…

Centos7部署Python程序详解

Centos7服务器部署Python 本文章前半部分为部署过程&#xff0c;后半部分为部署中碰到的问题及解决方案&#xff0c;仅供参考&#xff01;&#xff01;&#xff01;&#xff0c;本文示例为部署py文件为例。 部署步骤&#xff1a; 登录centos7服务器后 1.查看python版本 py…

Kotlin 高阶函数详解

高阶函数 在 Kotlin 中&#xff0c;函数是一等公民&#xff0c;高阶函数是 Kotlin 的一大难点&#xff0c;如果高阶函数不懂的话&#xff0c;那么要学习 Kotlin 中的协程、阅读 Kotlin 的源码是非常难的&#xff0c;因为源码中有太多高阶函数了。 高阶函数的定义 高阶函数的…

CGAL 点云分类

文章目录 一、简介二、实现代码三、实现效果参考资料一、简介 点云分类一直是点云数据应用的永恒课题,它包含很多,如地面点分类、建筑物分类、植被分类等。CGAL中也为我们提供了一种点云分类的方式,其具体的计算过程如下所述: 首先,使用点云中所携带的一些几何特征来对数据…

三、数据库索引

1、索引介绍 索引是一种用于快速查询和检索数据的数据结构&#xff0c;其本质可以看成是一种排序好的数据结构。 常见的索引结构有&#xff1a;B数&#xff0c;B树&#xff0c;Hash和红黑树等。在MySQL中&#xff0c;无论是 InnoDB还是MyISAM&#xff0c;都使用了B树作为索引…

西班牙卡瓦起泡酒的风味搭配

卡瓦是一种对食物友好的西班牙起泡酒&#xff0c;它的制作方法和香槟一样&#xff0c;可以和类似的食物搭配。卡瓦食物搭配包括各种食物&#xff0c;从海鲜和鱼到火腿&#xff0c;以及不同类型的小吃&#xff0c;也可以将卡瓦酒与甜点、水果和奶酪搭配。 卡瓦酒是世界上最著名的…

IDEA常用插件之注解插件

文章目录 注解插件JavaDoc插件安装修改配置生成文档加入自己信息 Easy JavaDoc安装插件在线安装离线安装中文名自动转英文加注释默认快捷键&#xff08;可通过IDEA快捷键设置修改&#xff09; 注解插件 JavaDoc插件 安装 修改配置 生成文档加入自己信息 Easy JavaDoc 中文文…

一种pug与html相互转换的工具

有时候看pug很不方便&#xff0c;这个语言虽然简洁&#xff0c;但可读性与维护性较差&#xff0c;所以需要进行转换&#xff0c;这个是win工具&#xff0c;比较方便。 这个工具的下载地址如下&#xff1a; https://download.csdn.net/download/qq_40032778/88244980 解压后如下…

PDFPrinting.Net Crack

PDFPrinting.Net Crack 它能够轻松灵活地预测完美的打印结果以及用户文件的示例性显示。在.NET的PDF打印中&#xff0c;可以快速浏览最关键的元素。如果用户需要获得更详细的概述&#xff0c;那么他可以查看快速入门手册&#xff0c;甚至现有文档的详细概述参考。 在这种情况下…

atxserver bug记录

8. 解决无法点击屏幕 原因&#xff1a;remotecontrol_android.html为按比例自动缩放&#xff0c;play.html&#xff08;Django&#xff09;显示的屏幕大小不会随页面放大缩小。有个h265方式获取的宽高是720*448&#xff0c;电脑上显示的大小是545*339&#xff0c;这个对不上&am…

理解机制,再探单元工厂的实现原理

最近有点忙,好久没更新文章了,今天继续再研究一下单元工厂的实现机制。为什么我们要这么重视这一块的内容呢?因为用计算机的目的是为了处理大量数据,如果数据量不大,大多情况下用纸就好了,专门用个计算设备的便捷性也就体现不出来。而大量数据的呈现方式的多样性精髓就在…

cuda编程002—流

没有使用同步的情况&#xff1a; #include <stdio.h> #include <cuda_runtime.h>__global__ void test_kernel(){printf("Message from Device.\n"); } void test(){test_kernel<<<1, 1>>>(); } #include <cuda_runtime.h> #i…

蓝蓝设计-UI设计公司作品-博晖创新原子吸收光谱仪软件交互及界面设计

博晖创新原子吸收光谱仪软件交互及界面设计 图标设计 | 交互设计 | 界面设计 博晖公司拥有强大的自主研发实力&#xff0c;建立了专业的研发团队&#xff0c;通过不断的技术创新&#xff0c;形成了分子诊断、免疫诊断、原子吸收、原子荧光及质谱五大技术平台&#xff0c;并成功…

ESP8266显示gif动态图,使用U8g2库

一.代码 #include <U8g2lib.h> //实现gif火柴人跑步动画// 定义GIF动画的帧数据 const unsigned char frame1[] {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0…