代码随想录算法训练营第四十三天 | 1049. 最后一块石头的重量 II,494. 目标和,474.一和零
- 1049. 最后一块石头的重量 II
- 494. 目标和
- 回溯算法
- 动态规划
- 474.一和零
1049. 最后一块石头的重量 II
题目链接
视频讲解
有一堆石头,用整数数组 stones 表示。其中 stones[i] 表示第 i 块石头的重量,每一回合,从中选出任意两块石头,然后将它们一起粉碎。假设石头的重量分别为 x 和 y,且 x <= y,那么粉碎的可能结果如下:
如果 x == y,那么两块石头都会被完全粉碎;
如果 x != y,那么重量为 x 的石头将会完全粉碎,而重量为 y 的石头新重量为 y-x
最后,最多只会剩下一块 石头,返回此石头 最小的可能重量,如果没有石头剩下,就返回 0
输入:stones = [31,26,33,21,40]
输出:5
本题物品的重量为stones[i],物品的价值也为stones[i],对应着01背包里的物品重量weight[i]和 物品价值value[i]
接下来进行动规五步曲:
确定dp数组以及下标的含义
dp[j]表示容量(这里说容量更形象,其实就是重量)为j的背包,最多可以背最大重量为dp[j],可以回忆一下01背包中,dp[j]的含义,容量为j的背包,最多可以装的价值为 dp[j],相对于 01背包,本题中,石头的重量是 stones[i],石头的价值也是 stones[i] ,可以 “最多可以装的价值为 dp[j]” == “最多可以背的重量为dp[j]”
确定递推公式
01背包的递推公式为:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);本题则是:dp[j] = max(dp[j], dp[j - stones[i]] + stones[i]);一些人可能看到这dp[j - stones[i]] + stones[i]中 又有- stones[i] 又有+stones[i],看着有点晕乎,可以再去看 dp[j]的含义
dp数组如何初始化
既然 dp[j]中的j表示容量,那么最大容量(重量)是多少呢,就是所有石头的重量和,因为提示中给出1 <= stones.length <= 30,1 <= stones[i] <= 1000,所以最大重量就是30 * 1000 ,而我们要求的target其实只是最大重量的一半,所以dp数组开到15000大小就可以了,当然也可以把石头遍历一遍,计算出石头总重量 然后除2,得到dp数组的大小,接下来就是如何初始化dp[j]呢,因为重量都不会是负数,所以dp[j]都初始化为0就可以了,这样在递归公式dp[j] = max(dp[j], dp[j - stones[i]] + stones[i]);中dp[j]才不会初始值所覆盖
代码为:
vector<int> dp(15001, 0);
确定遍历顺序
在动态规划:关于01背包问题,你该了解这些!(滚动数组) (opens new window)中就已经说明:如果使用一维dp数组,物品遍历的for循环放在外层,遍历背包的for循环放在内层,且内层for循环倒序遍历!
代码如下:
for (int i = 0; i < stones.size(); i++) { // 遍历物品
for (int j = target; j >= stones[i]; j--) { // 遍历背包
dp[j] = max(dp[j], dp[j - stones[i]] + stones[i]);
}
}
举例推导dp数组
举例,输入:[2,4,1,1],此时target = (2 + 4 + 1 + 1)/2 = 4 ,dp数组状态图如下:
最后dp[target]里是容量为target的背包所能背的最大重量,那么分成两堆石头,一堆石头的总重量是dp[target],另一堆就是sum - dp[target],在计算target的时候,target = sum / 2 因为是向下取整,所以sum - dp[target] 一定是大于等于dp[target]的,那么相撞之后剩下的最小石头重量就是 (sum - dp[target]) - dp[target]
class Solution {
public:
int lastStoneWeightII(vector<int>& stones) {
vector<int> dp(15001, 0);
int sum = 0;
for (int i = 0; i < stones.size(); i++) sum += stones[i];
int target = sum / 2;
for (int i = 0; i < stones.size(); i++) { // 遍历物品
for (int j = target; j >= stones[i]; j--) { // 遍历背包
dp[j] = max(dp[j], dp[j - stones[i]] + stones[i]);
}
}
return sum - dp[target] - dp[target];
}
};
494. 目标和
题目链接
视频讲解
给你一个非负整数数组 nums 和一个整数 target ,向数组中的每个整数前添加 ‘+’ 或 ‘-’ ,然后串联起所有整数,可以构造一个 表达式 :
例如,nums = [2, 1] ,可以在 2 之前添加 ‘+’ ,在 1 之前添加 ‘-’ ,然后串联起来得到表达式 “+2-1”
返回可以通过上述方法构造的、运算结果等于 target 的不同 表达式 的数目
输入:nums = [1,1,1,1,1], target = 3
输出:5
本题要如何使表达式结果为target,既然为target,那么就一定有 left组合 - right组合 = target,left + right = sum,而sum是固定的,right = sum - left,公式来了, left - (sum - left) = target 推导出 left = (target + sum)/2 ,target是固定的,sum是固定的,left就可以求出来,此时问题就是在集合nums中找出和为left的组合
回溯算法
class Solution {
private:
vector<vector<int>> result;
vector<int> path;
void backtracking(vector<int>& candidates, int target, int sum, int startIndex) {
if (sum == target) {
result.push_back(path);
}
// 如果 sum + candidates[i] > target 就终止遍历
for (int i = startIndex; i < candidates.size() && sum + candidates[i] <= target; i++) {
sum += candidates[i];
path.push_back(candidates[i]);
backtracking(candidates, target, sum, i + 1);
sum -= candidates[i];
path.pop_back();
}
}
public:
int findTargetSumWays(vector<int>& nums, int S) {
int sum = 0;
for (int i = 0; i < nums.size(); i++) sum += nums[i];
if (S > sum) return 0; // 此时没有方案
if ((S + sum) % 2) return 0; // 此时没有方案,两个int相加的时候要各位小心数值溢出的问题
int bagSize = (S + sum) / 2; // 转变为组合总和问题,bagsize就是要求的和
// 以下为回溯法代码
result.clear();
path.clear();
sort(nums.begin(), nums.end()); // 需要排序
backtracking(nums, bagSize, 0, 0);
return result.size();
}
};
动态规划
如何转化为01背包问题呢,假设加法的总和为x,那么减法对应的总和就是sum - x,所以我们要求的是 x - (sum - x) = target,x = (target + sum) / 2,此时问题就转化为,装满容量为x的背包,有几种方法,这里的x,就是bagSize,也就是我们后面要求的背包容量,大家看到(target + sum) / 2 应该担心计算的过程中向下取整有没有影响,这么担心就对了,例如sum 是5,S是2的话其实就是无解的,所以:
(C++代码中,输入的S 就是题目描述的 target)
if ((S + sum) % 2 == 1) return 0; // 此时没有方案
同时如果 S的绝对值已经大于sum,那么也是没有方案的
(C++代码中,输入的S 就是题目描述的 target)
if (abs(S) > sum) return 0; // 此时没有方案
再回归到01背包问题,为什么是01背包呢?因为每个物品(题目中的1)只用一次!这次和之前遇到的背包问题不一样了,之前都是求容量为j的背包,最多能装多少,本题则是装满有几种方法。其实这就是一个组合问题了
确定dp数组以及下标的含义
dp[j] 表示:填满j(包括j)这么大容积的包,有dp[j]种方法,其实也可以使用二维dp数组来求解本题,dp[i][j]:使用 下标为[0, i]的nums[i]能够凑满j(包括j)这么大容量的包,有dp[i][j]种方法,下面我都是统一使用一维数组进行, 二维降为一维(滚动数组),其实就是上一层拷贝下来
确定递推公式
有哪些来源可以推出dp[j]呢?只要搞到nums[i],凑成dp[j]就有dp[j - nums[i]] 种方法
例如:dp[j],j 为5
已经有一个1(nums[i]) 的话,有 dp[4]种方法 凑成 容量为5的背包
已经有一个2(nums[i]) 的话,有 dp[3]种方法 凑成 容量为5的背包
已经有一个3(nums[i]) 的话,有 dp[2]中方法 凑成 容量为5的背包
已经有一个4(nums[i]) 的话,有 dp[1]中方法 凑成 容量为5的背包
已经有一个5 (nums[i])的话,有 dp[0]中方法 凑成 容量为5的背包
那么凑整dp[5]有多少方法呢,也就是把 所有的 dp[j - nums[i]] 累加起来
所以求组合类问题的公式,都是类似这种:
dp[j] += dp[j - nums[i]]
这个公式在后面在讲解背包解决排列组合问题的时候还会用到!
dp数组如何初始化
从递推公式可以看出,在初始化的时候dp[0] 一定要初始化为1,因为dp[0]是在公式中一切递推结果的起源,如果dp[0]是0的话,递推结果将都是0,如果数组[0] ,target = 0,那么 bagSize = (target + sum) / 2 = 0。 dp[0]也应该是1, 也就是说给数组里的元素 0 前面无论放加法还是减法,都是 1 种方法,所以本题我们应该初始化 dp[0] 为 1,那 如果是 数组[0,0,0,0,0] target = 0 呢,其实 此时最终的dp[0] = 32,也就是这五个零 子集的所有组合情况,但此dp[0]非彼dp[0],dp[0]能算出32,其基础是因为dp[0] = 1 累加起来的,dp[j]其他下标对应的数值也应该初始化为0,从递推公式也可以看出,dp[j]要保证是0的初始值,才能正确的由dp[j - nums[i]]推导出来
确定遍历顺序
在动态规划:关于01背包问题,你该了解这些!(滚动数组)中,我们讲过对于01背包问题一维dp的遍历,nums放在外循环,target在内循环,且内循环倒序
举例推导dp数组
输入:nums: [1, 1, 1, 1, 1], S: 3
bagSize = (S + sum) / 2 = (3 + 5) / 2 = 4
dp数组状态变化如下:
class Solution {
public:
int findTargetSumWays(vector<int>& nums, int S) {
int sum = 0;
for (int i = 0; i < nums.size(); i++) sum += nums[i];
if (abs(S) > sum) return 0; // 此时没有方案
if ((S + sum) % 2 == 1) return 0; // 此时没有方案
int bagSize = (S + sum) / 2;
vector<int> dp(bagSize + 1, 0);
dp[0] = 1;
for (int i = 0; i < nums.size(); i++) {
for (int j = bagSize; j >= nums[i]; j--) {
dp[j] += dp[j - nums[i]];
}
}
return dp[bagSize];
}
};
474.一和零
题目链接
视频讲解
给你一个二进制字符串数组 strs 和两个整数 m 和 n,请你找出并返回 strs 的最大子集的长度,该子集中 最多 有 m 个 0 和 n 个 1,如果 x 的所有元素也是 y 的元素,集合 x 是集合 y 的子集
输入:strs = ["10", "0001", "111001", "1", "0"], m = 5, n = 3
输出:4
多重背包是每个物品,数量不同的情况,本题中strs 数组里的元素就是物品,每个物品都是一个!而m 和 n相当于是一个背包,两个维度的背包,理解成多重背包主要是把m和n混淆为物品了,感觉这是不同数量的物品,所以以为是多重背包,但本题其实是01背包问题!只不过这个背包有两个维度,一个是m 一个是n,而不同长度的字符串就是不同大小的待装物品
动规五部曲:
确定dp数组(dp table)以及下标的含义
dp[i][j]:最多有i个0和j个1的strs的最大子集的大小为dp[i][j]
确定递推公式
dp[i][j] 可以由前一个strs里的字符串推导出来,strs里的字符串有zeroNum个0,oneNum个1,dp[i][j] 就可以是 dp[i - zeroNum][j - oneNum] + 1,然后我们在遍历的过程中,取dp[i][j]的最大值,所以递推公式:dp[i][j] = max(dp[i][j], dp[i - zeroNum][j - oneNum] + 1);此时可以回想一下01背包的递推公式:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);对比一下就会发现,字符串的zeroNum和oneNum相当于物品的重量(weight[i]),字符串本身的个数相当于物品的价值(value[i]),这就是一个典型的01背包! 只不过物品的重量有了两个维度而已
dp数组如何初始化
在动态规划:关于01背包问题,你该了解这些!(滚动数组)中已经讲解了,01背包的dp数组初始化为0就可以,因为物品价值不会是负数,初始为0,保证递推的时候dp[i][j]不会被初始值覆盖
确定遍历顺序
在动态规划:关于01背包问题,你该了解这些!(滚动数组)中,我们讲到了01背包为什么一定是外层for循环遍历物品,内层for循环遍历背包容量且从后向前遍历!那么本题也是,物品就是strs里的字符串,背包容量就是题目描述中的m和n
for (string str : strs) { // 遍历物品
int oneNum = 0, zeroNum = 0;
for (char c : str) {
if (c == '0') zeroNum++;
else oneNum++;
}
for (int i = m; i >= zeroNum; i--) { // 遍历背包容量且从后向前遍历!
for (int j = n; j >= oneNum; j--) {
dp[i][j] = max(dp[i][j], dp[i - zeroNum][j - oneNum] + 1);
}
}
}
那个遍历背包容量的两层for循环先后循序有没有什么讲究?没讲究,都是物品重量的一个维度,先遍历哪个都行
举例推导dp数组
以输入:[“10”,“0001”,“111001”,“1”,“0”],m = 3,n = 3为例
最后dp数组的状态如下所示:
class Solution {
public:
int findMaxForm(vector<string>& strs, int m, int n) {
vector<vector<int>> dp(m + 1, vector<int> (n + 1, 0)); // 默认初始化0
for (string str : strs) { // 遍历物品
int oneNum = 0, zeroNum = 0;
for (char c : str) {
if (c == '0') zeroNum++;
else oneNum++;
}
for (int i = m; i >= zeroNum; i--) { // 遍历背包容量且从后向前遍历!
for (int j = n; j >= oneNum; j--) {
dp[i][j] = max(dp[i][j], dp[i - zeroNum][j - oneNum] + 1);
}
}
}
return dp[m][n];
}
};