二叉树
- 二叉树
- 1. 树中两个结点的最低公共祖先
- 方法一:公共路径
- 方法二:递归
- 2. 重建二叉树
- 根据前序遍历和中序遍历 得到树
- 补充题:树的遍历
- 3. 二叉树的下一个节点
- 4. 树的子结构( 递归中调用递归 )
- 5. 二叉树的镜像(两个指针互换可用 swap)
- 6. 对称的二叉树
- 错解:通过根节点比较子节点
- 正解:比较当前节点的值即可
- 7. 不分行从上往下打印二叉树( 层序遍历二叉树bfs )
- 8. 分行从上往下打印二叉树
- ( 利用两个队列遍历 )
- 利用数组个数 进行遍历
- 9. 之字形打印二叉树
- 10. 二叉搜索树的后序遍历序列
- 考点:根据二叉搜索树的后序遍历的特点
- 11. 二叉树中和为某一值的路径( dfs回溯 )
- 注意:只能是根节点到叶子节点
- 12. 序列化二叉树【序列化二叉树(本质就是 前中后序遍历)】
- 13. 二叉搜索树的第k个结点
- 14. 二叉树的深度【二叉树递归】
- 15. 平衡二叉树【二叉树递归】
二叉树
1. 树中两个结点的最低公共祖先
原题链接
方法一:公共路径
分别找出根节点到两个节点的路径,则最后一个公共节点就是最低公共祖先了。
时间复杂度分析:需要在树中查找节点,复杂度为O(n)
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
int findPath(TreeNode*root, TreeNode* p, vector<TreeNode*>&path){
if(!root)
return 0;
if(root->val==p->val){
path.push_back(root);
return 1;
}
int l = findPath(root->left,p,path);
int r = findPath(root->right,p,path);
if(l==1||r==1)
path.push_back(root);
return l==1||r==1;
}
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
vector<TreeNode*>path1,path2;
findPath(root,p,path1);
findPath(root,q,path2);
if(path1.empty()||path2.empty())
return NULL;
TreeNode* res =NULL;
for(int i = 0;i<path1.size();i++){
if(i>=path1.size()||i>=path2.size())
break;
if(path1[path1.size()-1-i]==path2[path2.size()-1-i])
res = path1[path1.size()-1-i];
else
break;
}
return res;
}
};
方法二:递归
考虑在左子树和右子树中查找这两个节点,如果两个节点分别位于左子树和右子树,则最低公共祖先为自己(root),若左子树中两个节点都找不到,说明最低公共祖先一定在右子树中,反之亦然。考虑到二叉树的递归特性,因此可以通过递归来求得。
时间复杂度分析:需要遍历树,复杂度为 O(n)
class Solution {
public:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
if(!root)
return NULL;
if(root==p||root==q)
return root;
TreeNode* left = lowestCommonAncestor(root->left, p, q);
TreeNode* right = lowestCommonAncestor(root->right, p, q);
if(left&&right)
return root;
if(left==NULL)
return right;
else
return left;
}
};
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public boolean flag = false;
public TreeNode ans = null;
public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
dfs(root,p,q);
return ans;
}
public TreeNode dfs(TreeNode root,TreeNode p,TreeNode q){
if(root == null){
return null;
}
TreeNode l = dfs(root.left,p,q);
TreeNode r = dfs(root.right,p,q);
if(l != null && r != null){
ans = root;
return ans;
} else if((l != null || r != null) && (root.val == p.val || root.val == q.val)){
ans = root;
return ans;
} else if(root.val == p.val && root.val == q.val) {
ans = root;
return ans;
} else if(root.val == p.val || root.val == q.val) {
return root;
} else if((l != null || r != null)){
return root;
}
return null;
}
}
2. 重建二叉树
原题链接
根据前序遍历和中序遍历 得到树
过程如下:
- 首先根据前序遍历找到 根节点
- 找到中序遍历中,该根节点的位置
- 中序中 位于 根节点左边的就是 左子树,右边的就是右子树
- 由于我们需要在中序遍历中找到根节点的位置,那么每次都需要遍历中序遍历,不如直接用unordered_map存储数值和位置
- 便于写代码,我们可以每次把mp[根节点] 的位置 用变量表示出来
本题的代码不需要死记硬背
就需要明白
由前序确定根节点
由中序确定左右子树的个数
由左右子树的个数确定下一个根节点的位置
根据这三点去写代码即可
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
unordered_map<int,int> pos;
TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) {
int n = preorder.size();
for (int i = 0; i < n; i ++ )
pos[inorder[i]] = i;
return dfs(preorder, inorder, 0, n - 1, 0, n - 1);
}
TreeNode* dfs(vector<int>&pre, vector<int>&in, int pl, int pr, int il, int ir)
{
if (pl > pr) return NULL;
int k = pos[pre[pl]] - il;
TreeNode* root = new TreeNode(pre[pl]);
root->left = dfs(pre, in, pl + 1, pl + k, il, il + k - 1);
root->right = dfs(pre, in, pl + k + 1, pr, il + k + 1, ir);
return root;
}
};
补充题:树的遍历
#include <iostream>
#include <string>
#include <unordered_map>
#include <vector>
#include <algorithm>
#include<memory>
using namespace std;
const int N = 35;
int n;
int inorder[N], postorder[N];
unordered_map<int, int > leftChile, rightChile;//哈希表保存树,leftChile[i] = j: i 的左儿子是j,rightChilet同理
unordered_map<int, int > h;//保存中序遍历中各节点的位置
int dfs(int postorder[], int inorder[], int l1, int r1, int l2, int r2)//构造二叉树
{
if (l1 > r1) return 0;//没有节点,返回0
int root = postorder[r1];//根结点为后续遍历的最后一个节点
int k = h[root];//找到根节点在序遍历中的位置
leftChile[root] = dfs(postorder, inorder, l1, k - 1 - l2 + l1, l2, k - 1);//构造左儿子
rightChile[root] = dfs(postorder, inorder,r1-1 - (r2 - (k +1)) , r1 -1, k + 1, r2);//构造右儿子
return root;
}
int main()
{
cin >> n;//输入
for (int i = 0; i < n; i++)
cin >> postorder[i];
for (int i = 0; i < n; i++)
{
cin >> inorder[i];
h[inorder[i]] = i;//保存中序遍历中各个节点的位置
}
int root = dfs(postorder, inorder, 0, n - 1, 0, n - 1);//构造二叉树
//数组模拟队列
int q[N], hh = 0, tt = -1;//按层次遍历
if (root)//非0 表示有节点
q[++tt] = root;
while (hh <= tt)
{
int t = q[hh++];
if (leftChile[t]) q[++tt] = leftChile[t];//非0 为节点,入队列
if (rightChile[t]) q[++tt] = rightChile[t];//非0 为节点,入队列
}
for (int i = 0; i <= tt; i++)//队列中保存的就是按层次遍历的结果
cout << q[i] << " ";
return 0;
}
3. 二叉树的下一个节点
原题链接
中序遍历:左根右
本题要分析节点的特点
- 如果节点有右子树,那么右子树的最左边的节点就是该节点后序
- 如果没有右子树,会有三种可能,在代码中有体现
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode father;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
/**
* 模拟
* 时间复杂度:O(height),height 为二叉树的高度
* 空间复杂度:O(1)
*/
public TreeNode inorderSuccessor(TreeNode p) {
TreeNode node = p;
// Case 1. 如果该节点有右子树,那么下一个节点就是其右子树中最左边的节点
if (node.right != null) {
node = node.right;
while (node.left != null) {
node = node.left;
}
return node;
}
if(node.father != null && node.father.left == node)
return node.father;
if(node.father != null && node.father == null)
return null;
while(node.father!=null && node.father.right == node)
{
node = node.father;
}
return node.father;
}
}
4. 树的子结构( 递归中调用递归 )
原题链接
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
bool hasSubtree(TreeNode* pRoot1, TreeNode* pRoot2) {
if (!pRoot1 || !pRoot2) return false;
if (isSame(pRoot1, pRoot2)) return true;
return hasSubtree(pRoot1->left, pRoot2) || hasSubtree(pRoot1->right, pRoot2);
}
bool isSame(TreeNode* pRoot1, TreeNode* pRoot2) {
if (!pRoot2) return true;
if (!pRoot1 || pRoot1->val != pRoot2->val) return false;
return isSame(pRoot1->left, pRoot2->left) && isSame(pRoot1->right, pRoot2->right);
}
};
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public boolean hasSubtree(TreeNode pRoot1, TreeNode pRoot2) {
// 类比字符串匹配
if (pRoot1 == null || pRoot2 == null) return false;
if (isPart(pRoot1, pRoot2)) return true;
// 如果以 pRoot1 开始的子树不能包含 pRoot2 的话,就从 pRoot1.left 和 pRoot1.right 开始
return hasSubtree(pRoot1.left, pRoot2) || hasSubtree(pRoot1.right, pRoot2);
}
// 以 pRoot1 节点为根的情况下,pRoot1 和 pRoot2 同时对应遍历,如果遍历到的值都相同,且 pRoot2 先遍历到 null 或者同时遍历到 null,说明 pRoot2 是 pRoot1 的子结构
public boolean isPart(TreeNode pRoot1, TreeNode pRoot2) {
if (pRoot2 == null) return true;
if (pRoot1 == null || pRoot1.val != pRoot2.val) return false;
// 同时遍历左右子树
return isPart(pRoot1.left, pRoot2.left) && isPart(pRoot1.right, pRoot2.right);
}
}
5. 二叉树的镜像(两个指针互换可用 swap)
原题链接
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
void mirror(TreeNode* root) {
if (!root) return;
swap(root->left, root->right);
mirror(root->left);
mirror(root->right);
}
};
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public void mirror(TreeNode root) {
dfs(root);
}
public void dfs(TreeNode root){
if(root == null){
return;
}
TreeNode temp = root.right;
root.right = root.left;
root.left = temp;
dfs(root.left);
dfs(root.right);
}
}
6. 对称的二叉树
原题链接
错解:通过根节点比较子节点
没写完,太复杂
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
bool isSymmetric(TreeNode* root) {
if(root == NULL)
return true;
return dfs(root->left,root->right);
}
bool dfs(TreeNode* r1,TreeNode* r2)
{
if(r1==NULL && r2==NULL)
return true;
if(r1!=NULL&&r2==NULL || r1==NULL&&r2!=NULL)
return false;
if(r1->left->val != r2->right->val || r1->right->val != r2->left->val)
return false;
return dfs(r1->left,r2->right) && dfs(r1->right,r2->left);
}
};
正解:比较当前节点的值即可
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
bool isSymmetric(TreeNode* root) {
if(root == NULL)
return true;
return dfs(root->left,root->right);
}
bool dfs(TreeNode* r1,TreeNode* r2)
{
if(r1==NULL && r2==NULL)
return true;
if(r1!=NULL&&r2==NULL || r1==NULL&&r2!=NULL)
return false;
if(r1->val != r2->val)
return false;
return dfs(r1->left,r2->right) && dfs(r1->right,r2->left);
}
};
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public boolean isSymmetric(TreeNode root) {
if(root == null){
return true;
}
return dfs(root.left,root.right);
}
public boolean dfs(TreeNode l,TreeNode r){
if((l == null && r != null) || (l != null && r == null)){
return false;
}
if(l == null && r == null){
return true;
}
if(l.val != r.val){
return false;
}
return dfs(l.left,r.right) && dfs(l.right,r.left);
}
}
7. 不分行从上往下打印二叉树( 层序遍历二叉树bfs )
原题链接
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
vector<int> printFromTopToBottom(TreeNode* root) {
vector<int> ans;
if(root==NULL)
return ans;
queue<TreeNode*> q;
q.push(root);
while(q.size())
{
auto t = q.front();
q.pop();
ans.push_back(t->val);
if(t->left != NULL)
q.push(t->left);
if(t->right != NULL)
q.push(t->right);
}
return ans;
}
};
8. 分行从上往下打印二叉树
( 利用两个队列遍历 )
利用数组个数 进行遍历
原题链接
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
vector<int> get_val(vector<TreeNode*> level)
{
vector<int> res;
for (auto &u : level)
res.push_back(u->val);
return res;
}
vector<vector<int>> printFromTopToBottom(TreeNode* root) {
vector<vector<int>>res;
if (!root) return res;
vector<TreeNode*>level;
level.push_back(root);
res.push_back(get_val(level));
while (true)
{
vector<TreeNode*> newLevel;
for (auto &u : level)
{
if (u->left) newLevel.push_back(u->left);
if (u->right) newLevel.push_back(u->right);
}
if (newLevel.size())
{
res.push_back(get_val(newLevel));
level = newLevel;
}
else break;
}
return res;
}
};
9. 之字形打印二叉树
原题链接
本题和上一道题差不多
就是需要定义一个变量
判断是否需要翻转
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
vector<int> get_val(vector<TreeNode*> level)
{
vector<int> res;
for (auto &u : level)
res.push_back(u->val);
return res;
}
vector<vector<int>> printFromTopToBottom(TreeNode* root) {
vector<vector<int>>res;
if (!root) return res;
vector<TreeNode*>level;
level.push_back(root);
res.push_back(get_val(level));
bool zigzag = true;
while (true)
{
vector<TreeNode*> newLevel;
for (auto &u : level)
{
if (u->left) newLevel.push_back(u->left);
if (u->right) newLevel.push_back(u->right);
}
if (newLevel.size())
{
vector<int>temp = get_val(newLevel);
if (zigzag)
reverse(temp.begin(), temp.end());
res.push_back(temp);
level = newLevel;
}
else break;
zigzag = !zigzag;
}
return res;
}
};
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public List<List<Integer>> printFromTopToBottom(TreeNode root) {
List<List<Integer>> ans = new ArrayList<>();
if(root == null){
return ans;
}
Queue<TreeNode> q1 = new LinkedList<TreeNode>();
q1.offer(root);
List<Integer> l = new ArrayList();
l.add(root.val);
ans.add(l);
boolean flag = false;
while(true) {
Queue<TreeNode> q2 = new LinkedList<TreeNode>();
for(TreeNode x : q1){
if(x.left != null) {
q2.offer(x.left);
}
if(x.right != null) {
q2.offer(x.right);
}
}
if(!q2.isEmpty()) {
List<Integer> l1 = new ArrayList();
for(TreeNode x : q2){
l1.add(x.val);
}
if(flag == false){
Collections.reverse(l1);
flag = true;
} else {
flag = false;
}
ans.add(l1);
q1 = q2;
} else {
break;
}
}
return ans;
}
}
```java
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public List<List<Integer>> printFromTopToBottom(TreeNode root) {
List<List<Integer>> ans = new ArrayList<>();
if(root == null){
return ans;
}
Queue<TreeNode> q1 = new LinkedList<TreeNode>();
q1.offer(root);
List<Integer> l = new ArrayList();
l.add(root.val);
ans.add(l);
while(true) {
Queue<TreeNode> q2 = new LinkedList<TreeNode>();
for(TreeNode x : q1){
if(x.left != null) {
q2.offer(x.left);
}
if(x.right != null) {
q2.offer(x.right);
}
}
if(!q2.isEmpty()) {
List<Integer> l1 = new ArrayList();
for(TreeNode x : q2){
l1.add(x.val);
}
ans.add(l1);
q1 = q2;
} else {
break;
}
}
return ans;
}
}
10. 二叉搜索树的后序遍历序列
原题链接
考点:根据二叉搜索树的后序遍历的特点
由于是后序遍历,所以最后一个结点就是根节点,又因为是二叉搜索树,所以从第一个结点开始所有比它小的结点就是它的左子树,其他就是它的右子树。如果右子树有点不大于根节点的话就说明不是一棵二叉搜索树,返回false。最后递归处理左右子树。
class Solution {
public:
vector<int> seq;//设成全局变量方便操作
bool verifySequenceOfBST(vector<int> sequence) {
seq = sequence;
return dfs(0, seq.size() - 1);
}
bool dfs(int l, int r)
{
//如果区间内啥也没有就说明把所有的结点都判断完了,却没有一个是有问题的,所以返回true
if (l >= r)
return true;
//取出根节点
int root = seq[r];
//找出所有从l开始连续的比根节点小的结点
int k = l;
while (k < r && seq[k] < root)
k ++;
//这时k就是右子树后序遍历中的第一个结点
//如果不满足二叉搜索树的性质就返回false
for (int i = k; i < r; i ++)
if (seq[i] < root)
return false;
//递归处理左右子树
//y总的视频里的代码是错的
//他写的是return dfs(l, k - 1) && dfs(k + 1, r);
//这样会WA
return dfs(l, k - 1) && dfs(k, r - 1);
}
};
class Solution {
public boolean verifySequenceOfBST(int [] sequence) {
seq = sequence;
return dfs(0, seq.length - 1);
}
private boolean dfs(int l, int r) {
if (l >= r) return true;
int root = seq[r];
int k = l;
while (k < r && seq[k] < root) k++;
for (int i = k; i < r; i++) {
if (seq[i] < root)
return false;
}
return dfs(l, k - 1) && dfs(k, r - 1);
}
private int[] seq;
}
11. 二叉树中和为某一值的路径( dfs回溯 )
注意:只能是根节点到叶子节点
原题链接
首先补充题意:本题要求的路径是根节点到叶子节点
本题就是一个dfs回溯问题
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
vector<vector<int>> ans;
vector<vector<int>> findPath(TreeNode* root, int sum) {
vector<int> sup;
dfs(root,sum,sup);
return ans;
}
void dfs(TreeNode* root,int sum,vector<int>& sup)
{
if(root == NULL)
return;
sum -= root->val;
sup.push_back(root->val);
if(root->left == NULL && root->right == NULL && sum == 0)
ans.push_back(sup);
dfs(root->left,sum,sup);
dfs(root->right,sum,sup);
sum += root->val;
sup.pop_back();
}
};
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public List<List<Integer>> res = new ArrayList<>();
public List<List<Integer>> findPath(TreeNode root, int sum) {
List<Integer> list = new ArrayList<>();
dfs(root,list,sum,0);
return res;
}
void dfs(TreeNode root,List<Integer> list,int sum,int ans){
if(root == null){
return;
}
list.add(root.val);
if(ans+root.val == sum && root.left == null && root.right == null){
res.add(new ArrayList<>(list));
}
dfs(root.left,list,sum,ans+root.val);
dfs(root.right,list,sum,ans+root.val);
list.remove(list.size() - 1);
}
}
12. 序列化二叉树【序列化二叉树(本质就是 前中后序遍历)】
原题链接
本题就是实现两个函数
把二叉树转成 字符串形式(可以根据前序遍历 后序遍历 中序遍历 层序遍历都可以)
然后把二叉树的字符串形式 转成二叉树
前序遍历:
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
// Encodes a tree to a single string.
string serialize(TreeNode* root) {
string res;
dfs_s(root, res);
return res;
}
void dfs_s(TreeNode *root, string &res)
{
if (!root) {
res += "null ";
return;
}
res += to_string(root->val) + ' ';//int转成string就是用to_string
dfs_s(root->left, res);
dfs_s(root->right, res);
}
// Decodes your encoded data to tree.
TreeNode* deserialize(string data) {
int u = 0;
return dfs_d(data, u);
}
TreeNode* dfs_d(string data, int &u)
{
if (u == data.size()) return NULL;
int k = u;
while (data[k] != ' ') k ++ ;
if (data[u] == 'n') {
u = k + 1;
return NULL;
}
int val = 0, sign = 1;
if (u < k && data[u] == '-') sign = -1, u ++ ;
for (int i = u; i < k; i ++ ) val = val * 10 + data[i] - '0';
val *= sign;
u = k + 1;
auto root = new TreeNode(val);
root->left = dfs_d(data, u);
root->right = dfs_d(data, u);
return root;
}
};
13. 二叉搜索树的第k个结点
原题链接
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
TreeNode *ans;
TreeNode* kthNode(TreeNode* root, int k) {
dfs(root, k);
return ans;
}
void dfs(TreeNode *root, int &k)
{
if (!k || !root) return;
dfs(root->left, k);
--k;
if (!k) ans = root;
else dfs(root->right, k);
}
};
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public int k;
public TreeNode kthNode(TreeNode root, int kk) {
if(root == null){
return null;
}
k = kk;
return dfs(root);
}
public TreeNode dfs(TreeNode root){
if(root == null || k < 0){
return null;
}
TreeNode l = dfs(root.left);
k = k - 1;
if(k == 0){
return root;
}
TreeNode r = dfs(root.right);
if(l != null) {
return l;
} else if(r != null) {
return r;
} else {
return null;
}
}
}
14. 二叉树的深度【二叉树递归】
原题链接
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
int treeDepth(TreeNode* root) {
return dfs(root,0);
}
int dfs(TreeNode* r,int ans){
if(r==NULL)
return ans;
ans++;
return max(dfs(r->left,ans),dfs(r->right,ans));
}
};
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public int treeDepth(TreeNode root) {
return dfs(root,0);
}
public int dfs(TreeNode root,int cnt) {
if (root == null) {
return cnt;
}
int l = dfs(root.left,cnt+1);
int r = dfs(root.right,cnt+1);
if (l > r) {
return l;
} else {
return r;
}
}
}
15. 平衡二叉树【二叉树递归】
原题链接
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
bool ans = true;
bool isBalanced(TreeNode* root) {
dfs(root);
return ans;
}
int dfs(TreeNode *root)
{
if (!root) return 0;
int left = dfs(root->left), right = dfs(root->right);
if (abs(left - right) > 1) ans = false;
return max(left, right) + 1;
}
};
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
boolean flag = true;
public boolean isBalanced(TreeNode root) {
dfs(root,0);
return flag;
}
public int dfs(TreeNode root,int cnt) {
if (root == null) {
return cnt;
}
int l = dfs(root.left,cnt+1);
int r = dfs(root.right,cnt+1);
if (l - r >= 2) {
flag = false;
}
if (l > r) {
return l;
} else {
return r;
}
}
}