【TDSQL-C Serverless 产品体验】| 实战分享 | 文末送书

news2024/12/28 9:10:21

目录

  • 一. 🦁 产品引入
  • 二. 🦁 TDSQL-C数据库使用体验——实战案例
    • 2.1 实战案例介绍
    • 2.2 实操指导
      • 1. 购买TDSQL数据库
      • 2. [配置选择](https://buy.cloud.tencent.com/cynosdb#/)
      • 3. 配置TDSQL-C 集群
      • 4. 点击授权并创建
      • 5. 记住主机名和端口
      • 6. 登录TDSQL
      • 7. 链接数据库
      • 8. 自己创建相应的库(这里省略)
      • 9. 项目目录结构
      • 10. 创建读取excel文件的函数
      • 11. 根据excel文件名创建数据库表名
      • 12. 将读取的excel 数据保存到数据库对应的表中
      • 13. 读取数据库中存入的数据
      • 14. 执行函数,并生成词云图
      • 15. 词云图效果展示
      • 16.终端效果展示
      • 17. 完整代码
  • 三. 🦁 传统主从架构与TDSQL-C 计算与存储分离架构的对比
    • 3.1 传统MySQL主从架构痛点
    • 3.2 TDSQL-C 计算与存储分离架构的优势
    • 3.3 存储架构原理
  • 四. 🦁 总结
  • 五. 🦁 文末福利

一. 🦁 产品引入

在当今云计算时代,不同类型的业务对高弹性、高可用性和可扩展性的需求越来越强烈,按需使用资源成为企业所需要的关键功能。为了满足这些需求,云原生数据库的Serverless化已经成为云数据库发展的重要方向之一。

过去,云数据库的发展经历了几个时代。在1.0时代,主要侧重于提供云托管的数据库服务,使用户能够将数据库迁移到云中,但管理仍然需要一定程度的关注。在2.0时代,随着容器技术的发展,出现了容器架构的云原生数据库,使数据库能够更好地与容器和微服务一起工作,实现更灵活的部署和管理

然而,3.0时代正在迅速到来,云Serverless数据库将成为主流趋势。Serverless数据库将进一步解放用户,让他们无需关心底层基础设施的管理。这种模型下,用户只需关注数据和应用逻辑,而云服务提供商会自动处理底层的资源管理、扩展性和备份等任务。这不仅可以提高开发效率,还可以降低成本因为资源使用是按需付费的
在这里插入图片描述

腾讯云数据库的"TDSQL-C Serverless"新版本的发布,标志着云原生数据库的Serverless化进程已经进入全面推进的阶段。这个趋势将继续推动云数据库的创新,满足不断变化的业务需求,为企业提供更强大、更灵活的数据库解决方案。
新升级的TDSQL-C推出全球首个可释放存储架构的Serverless服务。当前,业内的Serverless无法完全做到不使用不付费,一般实例暂停后仍然会收取高昂的存储费用,可释放存储将彻底解决这一问题。当实例暂停后,数据会进行归档存储,用户无需再为高额的分布式存储进行付费,可在原实例暂停后的存储费用上降低成本80%
看到这里小伙伴们已经非常迫不及待了吧?跟着狮子来体验一下这个产品的性能是否真如介绍那样优秀叭!!!

二. 🦁 TDSQL-C数据库使用体验——实战案例

2.1 实战案例介绍

本次我们使用python 语言 进行TDSQL Serverless MySQL 进行体验, 实现思路如下:

  • 读取多个本地的 excel 文件 ,并将读取的数据存储到TDSQL 中
  • 从TDSQL 读取存储的数据
  • 将读取的数据生成词云图,并展示;

2.2 实操指导

1. 购买TDSQL数据库

  • 点击链接进入腾讯云 腾讯云链接 注册并登录

  • 在搜索框输入 TDSQL-C MYSQL 版 , 点击搜索
    在这里插入图片描述

2. 配置选择

注意 选择Serverless 的实例形态哦!!!
在这里插入图片描述
在这里插入图片描述

3. 配置TDSQL-C 集群

将外部读写地址开启

在这里插入图片描述

4. 点击授权并创建

在这里插入图片描述

5. 记住主机名和端口

在这里插入图片描述

6. 登录TDSQL

点击集群的登录按钮
在这里插入图片描述

7. 链接数据库

在这里插入图片描述

8. 自己创建相应的库(这里省略)

在这里插入图片描述

9. 项目目录结构

拉取完相关资源文件后,来实操一把,项目目录结构如下:
在这里插入图片描述

10. 创建读取excel文件的函数

def excelTomysql():
    path = '词频'  # 文件所在文件夹
    files = [path + "/" + i for i in os.listdir(path)]  # 获取文件夹下的文件名,并拼接完整路径
    for file_path in files:
        print(file_path)
        filename = os.path.basename(file_path)
        table_name = os.path.splitext(filename)[0]  # 使用文件名作为表名,去除文件扩展名
        # 使用pandas库读取Excel文件
        data = pd.read_excel(file_path, engine="openpyxl", header=0)  # 假设第一行是列名
        columns = {col: "VARCHAR(255)" for col in data.columns}  # 动态生成列名和数据类型

        create_table(table_name, columns)  # 创建表
        save_to_mysql(data, table_name)  # 将数据保存到MySQL数据库中,并使用文件名作为表名
        print(filename + ' uploaded and saved to MySQL successfully')

11. 根据excel文件名创建数据库表名

def create_table(table_name, columns):
    # 建立MySQL数据库连接
    conn = pymysql.connect(**db_config)
    cursor = conn.cursor()
    # 组装创建表的 SQL 查询语句
    query = f"CREATE TABLE IF NOT EXISTS {table_name} ("
    for col_name, col_type in columns.items():
        query += f"{col_name} {col_type}, "
    query = query.rstrip(", ")  # 去除最后一个逗号和空格
    query += ")"

    # 执行创建表的操作
    cursor.execute(query)

    # 提交事务并关闭连接
    conn.commit()
    cursor.close()
    conn.close()

12. 将读取的excel 数据保存到数据库对应的表中

def save_to_mysql(data, table_name):
    # 建立MySQL数据库连接
    conn = pymysql.connect(**db_config)
    cursor = conn.cursor()
    # 将数据写入MySQL表中(假设数据只有一个Sheet)
    for index, row in data.iterrows():
        query = f"INSERT INTO {table_name} ("
        for col_name in data.columns:
            query += f"{col_name}, "
        query = query.rstrip(", ")  # 去除最后一个逗号和空格
        query += ") VALUES ("
        values = tuple(row)
        query += ("%s, " * len(values)).rstrip(", ")  # 动态生成值的占位符
        query += ")"
        cursor.execute(query, values)

    # 提交事务并关闭连接
    conn.commit()
    cursor.close()
    conn.close()

13. 读取数据库中存入的数据

def query_data():
    # 建立MySQL数据库连接
    conn = pymysql.connect(**db_config)
    cursor = conn.cursor()
    # 查询所有表名
    cursor.execute("SHOW TABLES")
    tables = cursor.fetchall()

    data = []
    dic_list = []
    table_name_list = []
    for table in tables:
        # for table in [tables[-1]]:
        table_name = table[0]
        table_name_list.append(table_name)
        query = f"SELECT * FROM {table_name}"
        # # 执行查询并获取结果
        cursor.execute(query)
        result = cursor.fetchall()
        if len(result) > 0:
            columns = [desc[0] for desc in cursor.description]
            table_data = [{columns[i]: row[i] for i in range(len(columns))} for row in result]
            data.extend(table_data)
        dic = {}
        for i in data:
            dic[i['word']] = float(i['count'])
        dic_list.append(dic)

    conn.commit()
    cursor.close()
    conn.close()
    return dic_list, table_name_list

14. 执行函数,并生成词云图


if __name__ == '__main__':
    ##excelTomysql()方法将excel写入到mysql
    excelTomysql()
    print("excel写入到mysql成功!")
    # query_data()方法将mysql中的数据查询出来,每张表是一个dic,然后绘制词云
    result_list, table_name_list = query_data()
    print("从mysql获取数据成功!")
    for i in range(len(result_list)):
        maskImage = np.array(Image.open('background.PNG'))  # 定义词频背景图
        # 定义词云样式
        wc = wordcloud.WordCloud(
            font_path='PingFangBold.ttf', # 设置字体
            mask=maskImage,  # 设置背景图
            max_words=500,  # 最多显示词数
            max_font_size=100)  # 字号最大值
        # 生成词云图
        wc.generate_from_frequencies(result_list[i])  # 从字典生成词云
        # 保存图片到指定文件夹
        wc.to_file("词云图/{}.png".format(table_name_list[i]))
        print("生成的词云图【{}】已经保存成功!".format(table_name_list[i] + '.png'))
        # 在notebook中显示词云图
        plt.imshow(wc)  # 显示词云
        plt.axis('off')  # 关闭坐标轴
        plt.show()  # 显示图像

15. 词云图效果展示

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

16.终端效果展示

在这里插入图片描述

17. 完整代码

import pymysql
import pandas as pd
import os
import wordcloud
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt

# MySQL数据库连接配置
db_config = {
    'host': "gz-xxxxxxysql-grp-kb212sal.sql.tencentcdb.com",  # 主机名
    'port': 25648,  # 端口
    'user': "root",  # 账户
    'password': "TDSQL-C@!@Rgpk14.",  # 密码
    'database': 'db0',

}
def create_table(table_name, columns):
    # 建立MySQL数据库连接
    conn = pymysql.connect(**db_config)
    cursor = conn.cursor()
    # 组装创建表的 SQL 查询语句
    query = f"CREATE TABLE IF NOT EXISTS {table_name} ("
    for col_name, col_type in columns.items():
        query += f"{col_name} {col_type}, "
    query = query.rstrip(", ")  # 去除最后一个逗号和空格
    query += ")"

    # 执行创建表的操作
    cursor.execute(query)

    # 提交事务并关闭连接
    conn.commit()
    cursor.close()
    conn.close()


def excelTomysql():
    path = '词频'  # 文件所在文件夹
    files = [path + "/" + i for i in os.listdir(path)]  # 获取文件夹下的文件名,并拼接完整路径
    for file_path in files:
        print(file_path)
        filename = os.path.basename(file_path)
        table_name = os.path.splitext(filename)[0]  # 使用文件名作为表名,去除文件扩展名
        # 使用pandas库读取Excel文件
        data = pd.read_excel(file_path, engine="openpyxl", header=0)  # 假设第一行是列名
        columns = {col: "VARCHAR(255)" for col in data.columns}  # 动态生成列名和数据类型

        create_table(table_name, columns)  # 创建表
        save_to_mysql(data, table_name)  # 将数据保存到MySQL数据库中,并使用文件名作为表名
        print(filename + ' uploaded and saved to MySQL successfully')


def save_to_mysql(data, table_name):
    # 建立MySQL数据库连接
    conn = pymysql.connect(**db_config)
    cursor = conn.cursor()
    # 将数据写入MySQL表中(假设数据只有一个Sheet)
    for index, row in data.iterrows():
        query = f"INSERT INTO {table_name} ("
        for col_name in data.columns:
            query += f"{col_name}, "
        query = query.rstrip(", ")  # 去除最后一个逗号和空格
        query += ") VALUES ("
        values = tuple(row)
        query += ("%s, " * len(values)).rstrip(", ")  # 动态生成值的占位符
        query += ")"
        cursor.execute(query, values)

    # 提交事务并关闭连接
    conn.commit()
    cursor.close()
    conn.close()


def query_data():
    # 建立MySQL数据库连接
    conn = pymysql.connect(**db_config)
    cursor = conn.cursor()
    # 查询所有表名
    cursor.execute("SHOW TABLES")
    tables = cursor.fetchall()

    data = []
    dic_list = []
    table_name_list = []
    for table in tables:
        # for table in [tables[-1]]:
        table_name = table[0]
        table_name_list.append(table_name)
        query = f"SELECT * FROM {table_name}"
        # # 执行查询并获取结果
        cursor.execute(query)
        result = cursor.fetchall()
        if len(result) > 0:
            columns = [desc[0] for desc in cursor.description]
            table_data = [{columns[i]: row[i] for i in range(len(columns))} for row in result]
            data.extend(table_data)
        dic = {}
        for i in data:
            dic[i['word']] = float(i['count'])
        dic_list.append(dic)

    conn.commit()
    cursor.close()
    conn.close()
    return dic_list, table_name_list


if __name__ == '__main__':
    ##excelTomysql()方法将excel写入到mysql
    excelTomysql()
    print("excel写入到mysql成功!")
    # query_data()方法将mysql中的数据查询出来,每张表是一个dic,然后绘制词云
    result_list, table_name_list = query_data()
    print("从mysql获取数据成功!")
    for i in range(len(result_list)):
        maskImage = np.array(Image.open('background.PNG'))  # 定义词频背景图
        # 定义词云样式
        wc = wordcloud.WordCloud(
            font_path='PingFangBold.ttf', # 设置字体
            mask=maskImage,  # 设置背景图
            max_words=500,  # 最多显示词数
            max_font_size=100)  # 字号最大值
        # 生成词云图
        wc.generate_from_frequencies(result_list[i])  # 从字典生成词云
        # 保存图片到指定文件夹
        wc.to_file("词云图/{}.png".format(table_name_list[i]))
        print("生成的词云图【{}】已经保存成功!".format(table_name_list[i] + '.png'))
        # 在notebook中显示词云图
        plt.imshow(wc)  # 显示词云
        plt.axis('off')  # 关闭坐标轴
        plt.show()  # 显示图像

三. 🦁 传统主从架构与TDSQL-C 计算与存储分离架构的对比

在这里插入图片描述

3.1 传统MySQL主从架构痛点

  • 复制延迟: 主从复制中,从服务器复制主服务器上的数据。由于网络延迟、大事务、复杂查询等原因,从服务器上的数据可能会滞后于主服务器,造成数据不一致。

  • 单点故障: 主从复制架构中,主服务器是关键的单点。如果主服务器发生故障,从服务器无法继续同步数据,可能需要进行手动切换以恢复。

  • 数据一致性: 由于复制延迟等原因,从服务器上的数据可能不是实时更新的,这可能会导致应用程序在读取从服务器时获得不一致的结果。

  • 写入压力集中: 所有写入操作都要发送到主服务器,可能会导致主服务器成为性能瓶颈,尤其是在高写入负载下。

  • 复制链路故障: 如果主从复制链路遇到故障,可能会导致从服务器无法正常复制数据,需要进行手动干预来修复。

  • 数据冲突: 如果在主从复制架构中同时进行写入操作,可能会导致数据冲突和不一致,需要谨慎处理。

  • 拓扑复杂性: 在复杂的应用场景中,可能涉及多个主服务器和从服务器,管理和维护这些服务器的拓扑关系可能会变得复杂。

  • 备份和恢复: 备份和恢复可能会变得复杂,需要确保备份不会影响主从复制的正常运行。

  • 数据处理能力不均衡: 由于主从复制是单向的,从服务器无法直接处理写入操作,可能导致主服务器和从服务器之间的数据处理能力不均衡。

3.2 TDSQL-C 计算与存储分离架构的优势

在传统的 MySQL 主从复制架构的基础上进行了创新,带来了许多优势:
在这里插入图片描述

  • 性能与扩展性基于全新架构 HTAP 能力,基于列的数据存储和查询处理,与面向行的传统存储相比,最多可实现十倍以上的查询性能提升,计算与存储分离架构使得计算节点和存储节点可以独立扩展。这意味着可以根据实际需求,独立地扩展计算资源和存储资源,从而更好地适应不同的负载情况,提高了数据库的整体性能和扩展性。

  • 资源隔离: 通过将计算和存储分开,可以更好地隔离不同的工作负载。计算节点可以专注于处理查询、分析等任务,而存储节点可以专注于数据的持久化和管理,从而降低了互相干扰的可能性。

  • 灵活性和弹性: 由于计算和存储是独立的,可以根据需要灵活地调整计算资源和存储资源的比例。这样在负载波动较大的情况下,可以更有效地分配资源,提供更好的弹性。

  • 降低复杂性: 传统的主从复制架构中,主从之间需要保持同步,管理复杂。计算与存储分离架构简化了复制和同步的逻辑,减少了复杂性和潜在的问题。

  • 高可用性: 由于计算和存储是分离的,可以更容易地实现计算节点和存储节点的高可用性。在某个节点发生故障时,可以更快速地进行故障转移或恢复。

  • 资源利用率: 通过独立扩展计算和存储节点,可以更有效地利用资源。例如,可以根据查询和分析的需求,灵活地配置计算资源,从而提高资源利用率。

3.3 存储架构原理

在这里插入图片描述

  • DBClient数据路由机制
    1. 当计算节点启动时,DBClient 从 DBMaster 查询 Space 信息、Range 列表等;
    1. 计算节点写入表数据时,DBClient 根据路由信息,将 log 发送到对应的 cell pair。存储层接受日志并持久化到物理存储后回复 DBCIient,后者回复给计算节点,最终完成写入;
    1. 当计算节点读取数据时,将请求委派给 DBCIent,后者通过路由信息从存储获取数据页,并返回给计算节点,从而完成数据读取。
  • 存储层架构
    1. 1个存储集群由几十或上百个 cell pair 组成;
    1. cell pair 采用主从架构,保证数据三副本;
    1. 每个range 是2G(可调整)文件,一张大表(比如 100G)拆分成多个range 分布在多个 cell pair,最终实现海量存储空间及超高10 能力;

四. 🦁 总结

云原生时代,面对海量数据的存储,高并发负载和复杂查询等场景,这样的数据库出现,你爱了吗?

五. 🦁 文末福利

在这里插入图片描述


🦁 送书抽奖活动 🦁

在这里插入图片描述
Spring Cloud Alibaba核心技术宝典通过底层架构原理+大量即用型优质代码+经典实战案例,手把手教你掌握Spring Cloud Alibaba

本书简介

本书从分布式系统的基础概念讲起,逐步深入分布式系统中间件Spring Cloud Alibaba进阶实战,重点介绍了使用Spring Cloud Alibaba框架整合各种分布式组件的完整过程,让读者不但可以系统地学习分布式中间件的相关知识,
而且还能对业务逻辑的分析思路、实际应用开发有更为深入的理解。
全书共分5大章节,第1章开篇部分,讲解分布式系统的演进过程和Spring Cloud Alibaba概述及版本的选择,以及单体架构/微服务架构的优缺点;第2章讲解如何使用Spring Cloud Alibaba实现RPC通讯;第3章在介绍主流Nacos组件时,介绍了三元的概念以及使用Nacos实现注册中心和配置中心,包含环境的动态切换、配置的动态刷新、通用型配置、版本回滚等核心技术,为微服务环境提供基础的架构;第4章介绍了负责限流和熔断降级的Sentinel组件,包含收集系统运行状态、流量控制、熔断降级、热点、授权、系统规则、流控的异常处理、熔断的异常处理、规则持久化等;第4章介绍了网关常用案例,以及在软件项目中常用的高频使用技术点,力求为开发微服务项目的程序员提供一个快速学习的

京东链接:https://item.jd.com/14010448.html

本次活动赠书3本,评论区抽取3位小伙伴送书

活动时间: 截止到2023-08-30 20: 00
参与方式: 点赞、收藏本文章,并任意评论
抽奖时间: 2023.8.30
公布时间: 2023.8.30
通知方式:交流群内公布或私信通知

更多活动可继续关注上方🦁的博客,好运总会轮到你!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/916538.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Bit Timing Configuration

注意 此功能是实验性的。在未来的版本中,实现可能会发生变化。 ISO 11898中规定的CAN协议允许针对给定应用优化比特率、采样点和采样数量。这些被称为比特定时的参数可以被调整以满足通信系统和物理通信信道的要求。 这些参数包括: tseg1: 时间段1(TSEG1)是从同步段结束到采…

24V输入防反接电路

#24V输入防反接电路 (部分图片参考东沃电子) 用于对输入的24V电源进行防反接及ESD保护,可用于EMC测试实验的电源输入保护,额定电流3A,后级电路最大损坏电压为48V。 1.24V输入防反接原理图 如上图所示,24V_…

华为AR路由器 典型配置案例——以太网交换

目录 Eth-Trunk 例:配置三层链路聚合 组网需求 操作步骤 检查配置结果 配置脚本 VLAN 举例:配置基于接口划分VLAN,实现同一VLAN内的互通(同设备) 组网需求 操作步骤 检查配置结果 配置脚本 举例&#xff…

2023年国赛 高教社杯数学建模思路 - 案例:粒子群算法

文章目录 1 什么是粒子群算法?2 举个例子3 还是一个例子算法流程算法实现建模资料 # 0 赛题思路 (赛题出来以后第一时间在CSDN分享) https://blog.csdn.net/dc_sinor?typeblog 1 什么是粒子群算法? 粒子群算法(Pa…

ui设计专业学生实习报告范文

ui设计实习报告范文篇四 经过了四年的理论学习,使我们对平面设计有了基本掌握,对于平面设计这个专业也有了一个系统的学习和掌握。我们即将离开大学校园,作为平面设计专业的毕业生,心中想得更多的是如何去做好一个平面设计师、如…

操作系统-笔记-第五章-输入输出管理

目录 五、第五章——输入输出管理 1、IO设备的概念和分类 (1)IO设备分类——使用特性 (2)IO设备分类——传输速率 (3)IO设备分类——信息交换(块、字符) 2、IO控制器 &#x…

【Terraform学习】使用 Terraform 将 EC2 实例作为 Web 服务器启动(Terraform-AWS最佳实战学习)

使用 Terraform 将 EC2 实例作为 Web 服务器启动 实验步骤 前提条件 安装 Terraform: 地址 下载仓库代码模版 本实验代码位于 task_ec2 文件夹中。 变量文件 variables.tf 在上面的代码中,您将声明,aws_access_key,aws_secr…

入耳式无线耳机哪个款式好?无线蓝牙耳机音质排行榜

本着要买就认认真真的挑选一台的想法。和有线耳机相比,无线耳机确实有一定优势,比如说它的实用性明显要高不少。那么如何挑选,一款合适自己的耳机呢,首先,还是挑选出当前的热门款式,和各种网红推荐款&#…

Linux 挂载局域网内共享目录

Linux 挂载局域网内共享目录 1、安装samba服务端2、samba服务端配置3、添加samba服务访问账户4、防火墙5、重启服务6、windows访问7、linux访问 1、安装samba服务端 sudo apt-get install -y samba yum install -y samba2、samba服务端配置 vim /etc/samba/smb.conf在文档尾部…

shell 04(shell字符串变量)

一、字符串变量 字符串 (String)就是一系列字符的组合。字符串是 Shell编程中最常用的数据类型之一(除了数字和字符串,也没有其他类型了) 1.1 字符串格式 1.单引号方式 varabc 任何字符都会原样输出,在其中使用变量是无效的。 2.双引号方式,推荐 …

(动态规划) 剑指 Offer 42. 连续子数组的最大和 ——【Leetcode每日一题】

❓ 剑指 Offer 42. 连续子数组的最大和 难度:简单 输入一个整型数组,数组中的一个或连续多个整数组成一个子数组。求所有子数组的和的最大值。 要求时间复杂度为 O(n)。 示例1: 输入: nums [-2,1,-3,4,-1,2,1,-5,4] 输出: 6 解释: 连续子数组 [4,-1…

wazuh环境配置以及案例复现

目录 wazuh环境配置wazuh案例复现 wazuh环境配置 一、wazuh配置 1.1进入官网下载OVA启动软件 Virtual Machine (OVA) - Installation alternatives (wazuh.com) 1.2点击启动部署,傻瓜式操作 1.3通过账号:wazuh-user,密码:wazuh进…

机器视觉工程师,一个踏实喜欢加班,一个技术强挑活,老板怎么选

我们机器视觉工程师对于公司来说,降低成本,带来利润。所以在公司人才选拔上非常重要。 各有各的用处,踏实的可以用作后卫把容错率最小最重要的活给他在幕后;把出头沟通横向和门面出彩的活给后面那个。 同时要让他俩都知道自己在团…

记录protocol buffers Mac安装

使用brew安装最新的protobuf 在Mac 上安装,使用brew 可以安装最新的protobuf。这个也比较简单,简单说一下。 首先先检查一下是否安装了brew。如果没有安装brew的话,请先安装brew.可以通过brew --version来检查 使用brew install protobuf 来…

Kali 网络参数的配置

手工方式 Wired 有线 Woreless 无线 图形化的网络管理器(依赖的服务:NetworkManager) ┌──(root㉿kali)-[~] └─# systemctl status NetworkManager ● NetworkManager.service - Network ManagerLoaded: loaded (/lib/systemd/system/N…

AirPods Max 耳机被曝耳罩凝结水,引集体诉讼,“智商税”产品?

近日,一些用户反映称苹果公司的旗舰耳机AirPods Max存在严重问题。据用户表示,耳机可能会因为汗水或佩戴时间过长而产生凝结水,导致故障甚至报废。这一问题不仅在社交媒体平台上引起了广泛关注和讨论,甚至引发了一场集体诉讼。 据…

docker之Compose与DockerSwarm

目录 Compose 简介 概念 为什么需要? 配置字段 常用命令 安装 1.下载 2.授权 使用 1.创建文件 2.启动 docker Swarm 关键概念 调度策略 spread binpack random 特性 集群部署 1.准备 2.创建swarm并添加节点 在主服务器上创建swarm集群 节点…

肘部法则和轮廓系数(用于确定簇类数目)

知识储备 无监督聚类缺点 聚类不同于其他常见机器学习有监督方法,聚类为一种无监督学习方法,原理为随机选取K个质心(K为确定聚类的数目),计算距离质心最近的样本点,不断迭代更新质心。不断地将样本点划分…

Vue 项目布署后,刷新页面(或跳转页面)出现 404 解决办法

Vue 项目布署后,刷新页面(或跳转页面)出现 404 问题背景为什么会出现404解决办法(两种)方法一:改变服务器配置方法二:改变路由模式 单页应用(SPA)概念 问题背景 今天重新部署一个vue项目的时候…

途牛科技与火山引擎数智平台合作 打造企业大数据系统“降本”新范式

更多技术交流、求职机会,欢迎关注字节跳动数据平台微信公众号,回复【1】进入官方交流群 近日,南京途牛科技有限公司与火山引擎数智平台(VeDI)的合作获得新进展:途牛大数据系统全面迁移至火山引擎开源大数据…