2023年国赛 高教社杯数学建模思路 - 案例:粒子群算法

news2024/12/28 19:06:43

文章目录

  • 1 什么是粒子群算法?
  • 2 举个例子
  • 3 还是一个例子
  • 算法流程
  • 算法实现
  • 建模资料

# 0 赛题思路

(赛题出来以后第一时间在CSDN分享)

https://blog.csdn.net/dc_sinor?type=blog

1 什么是粒子群算法?

粒子群算法(Particle Swarm Optimization,PSO)是一种模仿鸟群、鱼群觅食行为发展起来的一种进化算法。其概念简单易于编程实现且运行效率高、参数相对较少,应用非常广泛。粒子群算法于1995年提出,距今(2019)已有24年历史。
  
  粒子群算法中每一个粒子的位置代表了待求问题的一个候选解。每一个粒子的位置在空间内的好坏由该粒子的位置在待求问题中的适应度值决定。每一个粒子在下一代的位置有其在这一代的位置与其自身的速度矢量决定,其速度决定了粒子每次飞行的方向和距离。在飞行过程中,粒子会记录下自己所到过的最优位置 P,群体也会更新群体所到过的最优位置G 。粒子的飞行速度则由其当前位置、粒子自身所到过的最优位置、群体所到过的最优位置以及粒子此时的速度共同决定。

在这里插入图片描述

2 举个例子

在这里插入图片描述
在一个湖中有两个人他们之间可以通信,并且可以探测到自己所在位置的最低点。初始位置如上图所示,由于右边比较深,因此左边的人会往右边移动一下小船。

在这里插入图片描述

现在左边比较深,因此右边的人会往左边移动一下小船

一直重复该过程,最后两个小船会相遇

在这里插入图片描述
得到一个局部的最优解
在这里插入图片描述将每个个体表示为粒子。每个个体在某一时刻的位置表示为,x(t),方向表示为v(t)

在这里插入图片描述

p(t)为在t时刻x个体的自己的最优解,g(t)为在t时刻所有个体的最优解,v(t)为个体在t时刻的方向,x(t)为个体在t时刻的位置

在这里插入图片描述

下一个位置为上图所示由x,p,g共同决定了

在这里插入图片描述

种群中的粒子通过不断地向自身和种群的历史信息进行学习,从而可以找到问题的最优解。

3 还是一个例子

粒子群算法是根据鸟群觅食行为衍生出的算法。现在,我们的主角换成是一群鸟。
在这里插入图片描述

小鸟们的目标很简单,要在这一带找到食物最充足的位置安家、休养生息。它们在这个地方的搜索策略如下:
  1. 每只鸟随机找一个地方,评估这个地方的食物量。
  2. 所有的鸟一起开会,选出食物量最多的地方作为安家的候选点G。
  3. 每只鸟回顾自己的旅程,记住自己曾经去过的食物量最多的地方P。
  4. 每只鸟为了找到食物量更多的地方,于是向着G飞行,但是呢,不知是出于选择困难症还是对P的留恋,或者是对G的不信任,小鸟向G飞行时,时不时也向P飞行,其实它自己也不知道到底是向G飞行的多还是向P飞行的多。
  5. 又到了开会的时间,如果小鸟们决定停止寻找,那么它们会选择当前的G来安家;否则继续2->3->4->5来寻找它们的栖息地。

在这里插入图片描述

上图描述的策略4的情况,一只鸟在点A处,点G是鸟群们找到过的食物最多的位置,点P是它自己去过的食物最多的地点。V是它现在的飞行速度(速度是矢量,有方向和大小),现在它决定向着P和G飞行,但是这是一只佛系鸟,具体飞多少随缘。如果没有速度V,它应该飞到B点,有了速度V的影响,它的合速度最终使它飞到了点C,这里是它的下一个目的地。如果C比P好那么C就成了下一次的P,如果C比G好,那么就成了下一次的G。

算法流程

在这里插入图片描述

算法实现

这里学长用python来给大家演示使用粒子群解函数最优解

在这里插入图片描述

import numpy as np
import matplotlib.pyplot as plt
import random


# 定义“粒子”类
class parti(object):
    def __init__(self, v, x):
        self.v = v                    # 粒子当前速度
        self.x = x                    # 粒子当前位置
        self.pbest = x                # 粒子历史最优位置

class PSO(object):
    def __init__(self, interval, tab='min', partisNum=10, iterMax=1000, w=1, c1=2, c2=2):
        self.interval = interval                                            # 给定状态空间 - 即待求解空间
        self.tab = tab.strip()                                              # 求解最大值还是最小值的标签: 'min' - 最小值;'max' - 最大值
        self.iterMax = iterMax                                              # 迭代求解次数
        self.w = w                                                          # 惯性因子
        self.c1, self.c2 = c1, c2                                           # 学习因子
        self.v_max = (interval[1] - interval[0]) * 0.1                      # 设置最大迁移速度
        #####################################################################
        self.partis_list, self.gbest = self.initPartis(partisNum)                 # 完成粒子群的初始化,并提取群体历史最优位置
        self.x_seeds = np.array(list(parti_.x for parti_ in self.partis_list))    # 提取粒子群的种子状态 ###
        self.solve()                                                              # 完成主体的求解过程
        self.display()                                                            # 数据可视化展示

    def initPartis(self, partisNum):
        partis_list = list()
        for i in range(partisNum):
            v_seed = random.uniform(-self.v_max, self.v_max)
            x_seed = random.uniform(*self.interval)
            partis_list.append(parti(v_seed, x_seed))
        temp = 'find_' + self.tab
        if hasattr(self, temp):                                             # 采用反射方法提取对应的函数
            gbest = getattr(self, temp)(partis_list)
        else:
            exit('>>>tab标签传参有误:"min"|"max"<<<')
        return partis_list, gbest

    def solve(self):
        for i in range(self.iterMax):
            for parti_c in self.partis_list:
                f1 = self.func(parti_c.x)
                # 更新粒子速度,并限制在最大迁移速度之内
                parti_c.v = self.w * parti_c.v + self.c1 * random.random() * (parti_c.pbest - parti_c.x) + self.c2 * random.random() * (self.gbest - parti_c.x)
                if parti_c.v > self.v_max: parti_c.v = self.v_max
                elif parti_c.v < -self.v_max: parti_c.v = -self.v_max
                # 更新粒子位置,并限制在待解空间之内
                if self.interval[0] <= parti_c.x + parti_c.v <=self.interval[1]:
                    parti_c.x = parti_c.x + parti_c.v
                else:
                    parti_c.x = parti_c.x - parti_c.v
                f2 = self.func(parti_c.x)
                getattr(self, 'deal_'+self.tab)(f1, f2, parti_c)             # 更新粒子历史最优位置与群体历史最优位置

    def func(self, x):                                                       # 状态产生函数 - 即待求解函数
        value = np.sin(x**2) * (x**2 - 5*x)
        return value

    def find_min(self, partis_list):                                         # 按状态函数最小值找到粒子群初始化的历史最优位置
        parti = min(partis_list, key=lambda parti: self.func(parti.pbest))
        return parti.pbest

    def find_max(self, partis_list):
        parti = max(partis_list, key=lambda parti: self.func(parti.pbest))   # 按状态函数最大值找到粒子群初始化的历史最优位置
        return parti.pbest

    def deal_min(self, f1, f2, parti_):
        if f2 < f1:                          # 更新粒子历史最优位置
            parti_.pbest = parti_.x
        if f2 < self.func(self.gbest):
            self.gbest = parti_.x            # 更新群体历史最优位置

    def deal_max(self, f1, f2, parti_):
        if f2 > f1:                          # 更新粒子历史最优位置
            parti_.pbest = parti_.x
        if f2 > self.func(self.gbest):
            self.gbest = parti_.x            # 更新群体历史最优位置

    def display(self):
        print('solution: {}'.format(self.gbest))
        plt.figure(figsize=(8, 4))
        x = np.linspace(self.interval[0], self.interval[1], 300)
        y = self.func(x)
        plt.plot(x, y, 'g-', label='function')
        plt.plot(self.x_seeds, self.func(self.x_seeds), 'b.', label='seeds')
        plt.plot(self.gbest, self.func(self.gbest), 'r*', label='solution')
        plt.xlabel('x')
        plt.ylabel('f(x)')
        plt.title('solution = {}'.format(self.gbest))
        plt.legend()
        plt.savefig('PSO.png', dpi=500)
        plt.show()
        plt.close()


if __name__ == '__main__':
    PSO([-9, 5], 'max')

效果
在这里插入图片描述

建模资料

资料分享: 最强建模资料
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/916528.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

ui设计专业学生实习报告范文

ui设计实习报告范文篇四 经过了四年的理论学习&#xff0c;使我们对平面设计有了基本掌握&#xff0c;对于平面设计这个专业也有了一个系统的学习和掌握。我们即将离开大学校园&#xff0c;作为平面设计专业的毕业生&#xff0c;心中想得更多的是如何去做好一个平面设计师、如…

操作系统-笔记-第五章-输入输出管理

目录 五、第五章——输入输出管理 1、IO设备的概念和分类 &#xff08;1&#xff09;IO设备分类——使用特性 &#xff08;2&#xff09;IO设备分类——传输速率 &#xff08;3&#xff09;IO设备分类——信息交换&#xff08;块、字符&#xff09; 2、IO控制器 &#x…

【Terraform学习】使用 Terraform 将 EC2 实例作为 Web 服务器启动(Terraform-AWS最佳实战学习)

使用 Terraform 将 EC2 实例作为 Web 服务器启动 实验步骤 前提条件 安装 Terraform&#xff1a; 地址 下载仓库代码模版 本实验代码位于 task_ec2 文件夹中。 变量文件 variables.tf 在上面的代码中&#xff0c;您将声明&#xff0c;aws_access_key&#xff0c;aws_secr…

入耳式无线耳机哪个款式好?无线蓝牙耳机音质排行榜

本着要买就认认真真的挑选一台的想法。和有线耳机相比&#xff0c;无线耳机确实有一定优势&#xff0c;比如说它的实用性明显要高不少。那么如何挑选&#xff0c;一款合适自己的耳机呢&#xff0c;首先&#xff0c;还是挑选出当前的热门款式&#xff0c;和各种网红推荐款&#…

Linux 挂载局域网内共享目录

Linux 挂载局域网内共享目录 1、安装samba服务端2、samba服务端配置3、添加samba服务访问账户4、防火墙5、重启服务6、windows访问7、linux访问 1、安装samba服务端 sudo apt-get install -y samba yum install -y samba2、samba服务端配置 vim /etc/samba/smb.conf在文档尾部…

shell 04(shell字符串变量)

一、字符串变量 字符串 (String)就是一系列字符的组合。字符串是 Shell编程中最常用的数据类型之一(除了数字和字符串&#xff0c;也没有其他类型了) 1.1 字符串格式 1.单引号方式 varabc 任何字符都会原样输出&#xff0c;在其中使用变量是无效的。 2.双引号方式,推荐 …

(动态规划) 剑指 Offer 42. 连续子数组的最大和 ——【Leetcode每日一题】

❓ 剑指 Offer 42. 连续子数组的最大和 难度&#xff1a;简单 输入一个整型数组&#xff0c;数组中的一个或连续多个整数组成一个子数组。求所有子数组的和的最大值。 要求时间复杂度为 O(n)。 示例1: 输入: nums [-2,1,-3,4,-1,2,1,-5,4] 输出: 6 解释: 连续子数组 [4,-1…

wazuh环境配置以及案例复现

目录 wazuh环境配置wazuh案例复现 wazuh环境配置 一、wazuh配置 1.1进入官网下载OVA启动软件 Virtual Machine (OVA) - Installation alternatives (wazuh.com) 1.2点击启动部署&#xff0c;傻瓜式操作 1.3通过账号&#xff1a;wazuh-user&#xff0c;密码&#xff1a;wazuh进…

机器视觉工程师,一个踏实喜欢加班,一个技术强挑活,老板怎么选

我们机器视觉工程师对于公司来说&#xff0c;降低成本&#xff0c;带来利润。所以在公司人才选拔上非常重要。 各有各的用处&#xff0c;踏实的可以用作后卫把容错率最小最重要的活给他在幕后&#xff1b;把出头沟通横向和门面出彩的活给后面那个。 同时要让他俩都知道自己在团…

记录protocol buffers Mac安装

使用brew安装最新的protobuf 在Mac 上安装&#xff0c;使用brew 可以安装最新的protobuf。这个也比较简单&#xff0c;简单说一下。 首先先检查一下是否安装了brew。如果没有安装brew的话&#xff0c;请先安装brew.可以通过brew --version来检查 使用brew install protobuf 来…

Kali 网络参数的配置

手工方式 Wired 有线 Woreless 无线 图形化的网络管理器&#xff08;依赖的服务&#xff1a;NetworkManager&#xff09; ┌──(root㉿kali)-[~] └─# systemctl status NetworkManager ● NetworkManager.service - Network ManagerLoaded: loaded (/lib/systemd/system/N…

AirPods Max 耳机被曝耳罩凝结水,引集体诉讼,“智商税”产品?

近日&#xff0c;一些用户反映称苹果公司的旗舰耳机AirPods Max存在严重问题。据用户表示&#xff0c;耳机可能会因为汗水或佩戴时间过长而产生凝结水&#xff0c;导致故障甚至报废。这一问题不仅在社交媒体平台上引起了广泛关注和讨论&#xff0c;甚至引发了一场集体诉讼。 据…

docker之Compose与DockerSwarm

目录 Compose 简介 概念 为什么需要&#xff1f; 配置字段 常用命令 安装 1.下载 2.授权 使用 1.创建文件 2.启动 docker Swarm 关键概念 调度策略 spread binpack random 特性 集群部署 1.准备 2.创建swarm并添加节点 在主服务器上创建swarm集群 节点…

肘部法则和轮廓系数(用于确定簇类数目)

知识储备 无监督聚类缺点 聚类不同于其他常见机器学习有监督方法&#xff0c;聚类为一种无监督学习方法&#xff0c;原理为随机选取K个质心&#xff08;K为确定聚类的数目&#xff09;&#xff0c;计算距离质心最近的样本点&#xff0c;不断迭代更新质心。不断地将样本点划分…

Vue 项目布署后,刷新页面(或跳转页面)出现 404 解决办法

Vue 项目布署后&#xff0c;刷新页面&#xff08;或跳转页面&#xff09;出现 404 问题背景为什么会出现404解决办法&#xff08;两种&#xff09;方法一&#xff1a;改变服务器配置方法二&#xff1a;改变路由模式 单页应用(SPA)概念 问题背景 今天重新部署一个vue项目的时候…

途牛科技与火山引擎数智平台合作 打造企业大数据系统“降本”新范式

更多技术交流、求职机会&#xff0c;欢迎关注字节跳动数据平台微信公众号&#xff0c;回复【1】进入官方交流群 近日&#xff0c;南京途牛科技有限公司与火山引擎数智平台&#xff08;VeDI&#xff09;的合作获得新进展&#xff1a;途牛大数据系统全面迁移至火山引擎开源大数据…

vue页面转pdf后分页时文字被横向割裂

效果 预期效果 //避免分页被截断async outPutPdfFn (id, title) {const _t this;const A4_WIDTH 592.28;const A4_HEIGHT 841.89;// dom的id。let target document.getElementById(pdf);let pageHeight target.scrollWidth / A4_WIDTH * A4_HEIGHT;// 获取分割dom&#xf…

Spring Boot 整合MyBatis(超详细)

&#x1f600;前言 本篇博文关于Spring Boot 整合MyBatis&#xff0c;希望你能够喜欢 &#x1f3e0;个人主页&#xff1a;晨犀主页 &#x1f9d1;个人简介&#xff1a;大家好&#xff0c;我是晨犀&#xff0c;希望我的文章可以帮助到大家&#xff0c;您的满意是我的动力&#x…

wazuh初次理解-8-23

一、wazuh配置&#xff1a; 1、进入官网下载OVA启动软件&#xff1a; Virtual Machine (OVA) - Installation alternatives 2、进入虚拟机进行配置&#xff1a; 3、登录提示&#xff1a; 4、将网络连接模式更改为NAT&#xff0c;否则不能上网&#xff1b; 4、重启网络&#…

Rabbitmq配置调优

1、参数调优 queue_index_embed_msgs_below&#xff1a; 控制消息的存储位置。是独立存储到msg_store中&#xff0c;还是嵌入消息的索引一并存储。默认值是4096&#xff08;字节&#xff09;&#xff0c;即小于4KB的消息会嵌入到消息索引中一并存储。**注&#xff1a;**4KB包括…