【分布式技术专题】「分布式ID系列」百度开源的分布式高性能的唯一ID生成器UidGenerator

news2024/11/22 11:58:46

UidGenerator是什么

UidGenerator是百度开源的一款分布式高性能的唯一ID生成器,更详细的情况可以查看官网集成文档

uid-generator是基于Twitter开源的snowflake算法实现的一款唯一主键生成器(数据库表的主键要求全局唯一是相当重要的)。要求java8及以上版本。

snowflake算法

Snowflake算法描述:指定机器 & 同一时刻 & 某一并发序列,是唯一的。据此可生成一个64 bits的唯一ID(long)。

将long的64位分为3部分,时间戳、工作机器id和序列号,位数分配如下:

时间戳部分的时间单位一般为毫秒,也就是说1台工作机器1毫秒可产生4096个id(2的12次方)。

UidGenerator算法

与原始的snowflake算法不同,uid-generator支持自定义时间戳、工作机器id和序列号等各部分的位数,以应用于不同场景。

  • sign(1bit):固定1bit符号标识,即生成的UID为正数。
  • delta seconds (28 bits):当前时间,相对于时间基点"2016-05-20"的增量值,单位:秒,最多可支持约8.7年
  • worker id (22 bits):机器id,最多可支持约420w次机器启动。内置实现为在启动时由数据库分配,默认分配策略为用后即弃,后续可提供复用策略。
  • sequence (13 bits):每秒下的并发序列,13 bits可支持每秒8192个并发。

这些字段的长度可以根据具体的应用需要进行动态的调整,满足总长度为64位即可。

Snowflake和UidGenerator的对比

百度的worker id的生成策略和美团的生成策略不太一样,美团的snowflake主要利用本地配置的port和IP来唯一确定一个workid,美团的这种生成方式还是可以由于手工配置错误造成port重复,最终产生重复ID的风险,百度的这种生成方式每次都是新增的,可能会一段时间后worker id用完的情况,人工配置错误的可能性很小了。

源码分析

DefaultUidGenerator

DefaultUidGenerator的产生id的方法与基本上就是常见的snowflake算法实现,仅有一些不同,如以秒为为单位而不是毫秒。DefaultUidGenerator的产生id的方法如下。

 protected synchronized long nextId() {
        long currentSecond = getCurrentSecond();

        if (currentSecond < lastSecond) {
            long refusedSeconds = lastSecond - currentSecond;
            throw new UidGenerateException("Clock moved backwards. Refusing for %d seconds", refusedSeconds);
        }

        if (currentSecond == lastSecond) {
            sequence = (sequence + 1) & bitsAllocator.getMaxSequence();

            if (sequence == 0) {
                currentSecond = getNextSecond(lastSecond);
            }

        } else {
            sequence = 0L;
        }
        lastSecond = currentSecond;

        return bitsAllocator.allocate(currentSecond - epochSeconds, workerId, sequence);
    }

nextId方法主要负责ID的生成,这种实现方式很简单,如果毫秒数未发生变化,在序列号加一即可,毫秒数发生变化,重置Sequence为0(Leaf文章中讲过,重置为0会造成如果利用这个ID分表的时候,并发量不大的时候,sequence字段会一直为0等,会出现数据倾斜)

CachedUidGenerator

CachedUidGenerator支持缓存生成的id。

  • 【采用RingBuffer来缓存已生成的UID, 并行化UID的生产和消费】
  • 【UidGenerator通过借用未来时间来解决sequence天然存在的并发限制】
基本实现原理

正如名字体现的那样,这是一种缓存型的ID生成方式,当剩余ID不足的时候,会异步的方式重新生成一批ID缓存起来,后续请求的时候直接的时候直接返回现成的ID即可。

在实现上, UidGenerator通过借用未来时间来解决sequence天然存在的并发限制; 采用RingBuffer来缓存已生成的UID, 并行化UID的生产和消费, 同时对CacheLine补齐,避免了由RingBuffer带来的硬件级「伪共享」问题. 最终单机QPS可达600万。

使用RingBuffer缓存生成的id。RingBuffer是个环形数组,默认大小为8192个,里面缓存着生成的id。

CachedUidGenerator采用了双RingBuffer,Uid-RingBuffer用于存储Uid、Flag-RingBuffer用于存储Uid状态(是否可填充、是否可消费)

由于数组元素在内存中是连续分配的,可最大程度利用CPU cache以提升性能。但同时会带来「伪共享」FalseSharing问题,为此在Tail、Cursor指针、Flag-RingBuffer中采用了CacheLine 补齐方式。

获取id

会从ringbuffer中拿一个id,支持并发获取


    public long getUID() {
        try {
            return ringBuffer.take();
        } catch (Exception e) {
            LOGGER.error("Generate unique id exception. ", e);
            throw new UidGenerateException(e);
        }
    }
RingBuffer缓存已生成的id

RingBuffer为环形数组,默认容量为sequence可容纳的最大值(8192个),可以通过boostPower参数设置大小。几个重要的数据结构,采用了RingBuffer的方式来缓存相关UID信息。

tail指针、Cursor指针用于环形数组上读写slot:

Tail指针

指向当前最后一个可用的UID位置:表示Producer生产的最大序号(此序号从0开始,持续递增)。Tail不能超过Cursor,即生产者不能覆盖未消费的slot。当Tail已赶上curosr,此时可通过rejectedPutBufferHandler指定PutRejectPolicy

Cursor指针

指向下一个获取UID的位置,其一定是小于Tail:表示Consumer消费到的最小序号(序号序列与Producer序列相同)。Cursor不能超过Tail,即不能消费未生产的slot。当Cursor已赶上tail,此时可通过rejectedTakeBufferHandler指定TakeRejectPolicy

Tail - Cursor表示的是现在可用的UID数量,当可用UID数量小于一定阈值的时候会重新添加一批新的UID在RingBuffer中。

填充id
  • RingBuffer填充时机
    • 程序启动时,将RingBuffer填充满,缓存着8192个id
    • 在调用getUID()获取id时,检测到RingBuffer中的剩余id个数小于总个数的50%,将RingBuffer填充满,使其缓存8192个id。
    • 定时填充(可配置是否使用以及定时任务的周期)

因为delta seconds部分是以秒为单位的,所以1个worker 1秒内最多生成的id书为8192个(2的13次方)。从上可知,支持的最大qps为8192,所以通过缓存id来提高吞吐量。

为什么叫借助未来时间?

因为每秒最多生成8192个id,当1秒获取id数多于8192时,RingBuffer中的id很快消耗完毕,在填充RingBuffer时,生成的id的delta seconds 部分只能使用未来的时间。(因为使用了未来的时间来生成id,所以上面说的是,【最多】可支持约8.7年)

注意:这里的RingBuffer不是Disruptor框架中的RingBuffer,但是借助了很多Disruptor中RingBuffer的设计思想,比如使用缓存行填充解决伪共享问题。

填充RingBuffer

    public void paddingBuffer() {
        LOGGER.info("Ready to padding buffer lastSecond:{}. {}", lastSecond.get(), ringBuffer);

        if (!running.compareAndSet(false, true)) {
            LOGGER.info("Padding buffer is still running. {}", ringBuffer);
            return;
        }

        boolean isFullRingBuffer = false;
        while (!isFullRingBuffer) {

            List uidList = uidProvider.provide(lastSecond.incrementAndGet());
            for (Long uid : uidList) {
                isFullRingBuffer = !ringBuffer.put(uid);
                if (isFullRingBuffer) {
                    break;
                }
            }
        }

        running.compareAndSet(true, false);
        LOGGER.info("End to padding buffer lastSecond:{}. {}", lastSecond.get(), ringBuffer);
    }

生成id(上面代码中的uidProvider.provide调用的就是这个方法)


    protected List nextIdsForOneSecond(long currentSecond) {

        int listSize = (int) bitsAllocator.getMaxSequence() + 1;
        List uidList = new ArrayList<>(listSize);

        long firstSeqUid = bitsAllocator.allocate(currentSecond - epochSeconds, workerId, 0L);
        for (int offset = 0; offset < listSize; offset++) {
            uidList.add(firstSeqUid + offset);
        }

        return uidList;
    }

RingBuffer的代码

public class RingBuffer {
    private static final Logger LOGGER = LoggerFactory.getLogger(RingBuffer.class);

    private static final int START_POINT = -1;
    private static final long CAN_PUT_FLAG = 0L;
    private static final long CAN_TAKE_FLAG = 1L;
    public static final int DEFAULT_PADDING_PERCENT = 50;

    private final int bufferSize;
    private final long indexMask;

    private final long[] slots;
    private final PaddedAtomicLong[] flags;

    private final AtomicLong tail = new PaddedAtomicLong(START_POINT);

    private final AtomicLong cursor = new PaddedAtomicLong(START_POINT);

    private final int paddingThreshold;

    private RejectedPutBufferHandler rejectedPutHandler = this::discardPutBuffer;

    private RejectedTakeBufferHandler rejectedTakeHandler = this::exceptionRejectedTakeBuffer;

    private BufferPaddingExecutor bufferPaddingExecutor;

代码层面的优化

代码中通过字节的填充,来避免伪共享的产生。

多核处理器处理相互独立的变量时,一旦这些变量处于同一个缓存行,不同变量的操作均会造成这一个缓存行失效,影响缓存的实际效果,造成很大的缓存失效的性能问题。下面图中线程处理不同的两个变量,但这两个变量的修改都会造成整个整个缓存行的失效,导致无效的加载、失效,出现了伪共享的问题

RingBuffer中通过定义一个PaddedAtomicLong来独占一个缓存行,代码中的实现填充可能需要根据具体的执行系统做一些调整,保证其独占一个缓存行即可。

take先关id的源码

下面我们来看下如何获取相关的UID

public long take() {

        long currentCursor = cursor.get();
        long nextCursor = cursor.updateAndGet(old -> old == tail.get() ? old : old + 1);

        Assert.isTrue(nextCursor >= currentCursor, "Curosr can't move back");

        long currentTail = tail.get();
        if (currentTail - nextCursor < paddingThreshold) {
            LOGGER.info("Reach the padding threshold:{}. tail:{}, cursor:{}, rest:{}", paddingThreshold, currentTail,
                    nextCursor, currentTail - nextCursor);
            bufferPaddingExecutor.asyncPadding();
        }

        if (nextCursor == currentCursor) {
            rejectedTakeHandler.rejectTakeBuffer(this);
        }

        int nextCursorIndex = calSlotIndex(nextCursor);
        Assert.isTrue(flags[nextCursorIndex].get() == CAN_TAKE_FLAG, "Curosr not in can take status");

        long uid = slots[nextCursorIndex];
        flags[nextCursorIndex].set(CAN_PUT_FLAG);

        return uid;
    }

通过AtomicLong.updateAndGet来避免对整个方法进行加锁,获取一个可以访问的UID的游标值,根据这个下标获取slots中相关的uid直接返回 缓存中可用的uid(Tail - Cursor)小于一定阈值的时候,需要启动另外一个线程来生成一批UID UID 的生成

public synchronized boolean put(long uid) { long currentTail = tail.get(); long currentCursor = cursor.get();


    long distance = currentTail - (currentCursor == START_POINT ? 0 : currentCursor);
    if (distance == bufferSize - 1) {
        rejectedPutHandler.rejectPutBuffer(this, uid);
        return false;
    }

    int nextTailIndex = calSlotIndex(currentTail + 1);
    if (flags[nextTailIndex].get() != CAN_PUT_FLAG) {
        rejectedPutHandler.rejectPutBuffer(this, uid);
        return false;
    }

    slots[nextTailIndex] = uid;
    flags[nextTailIndex].set(CAN_TAKE_FLAG);
    tail.incrementAndGet();

    return true;
}

获取Tail的下标值,如果缓存区满的话直接调用RejectedPutHandler.rejectPutBuffer方法 未满的话将UID放置在slots数组相应的位置上,同时将Flags数组相应的位置改为CAN_TAKE_FLAG CachedUidGenerator通过缓存的方式预先生成一批UID列表,可以解决UID获取时候的耗时,但这种方式也有不好点,一方面需要耗费内存来缓存这部分数据,另外如果访问量不大的情况下,提前生成的UID中的时间戳可能是很早之前的,DefaultUidGenerator应该在大部分的场景中就可以满足相关的需求了。

填充缓存行解决"伪共享"

关于伪共享,可以参考这篇文章《伪共享(false sharing),并发编程无声的性能杀手》


    private final PaddedAtomicLong[] flags;

    private final AtomicLong tail = new PaddedAtomicLong(START_POINT);

    private final AtomicLong cursor = new PaddedAtomicLong(START_POINT)
PaddedAtomicLong的设计

public class PaddedAtomicLong extends AtomicLong {
    private static final long serialVersionUID = -3415778863941386253L;

    public volatile long p1, p2, p3, p4, p5, p6 = 7L;

    public PaddedAtomicLong() {
        super();
    }

    public PaddedAtomicLong(long initialValue) {
        super(initialValue);
    }

    public long sumPaddingToPreventOptimization() {
        return p1 + p2 + p3 + p4 + p5 + p6;
    }

}

Spring Boot工程集成全局唯一ID生成器 UidGenerator

基础工程创建

官网集成文档

创建数据表

执行如下SQL

DROP TABLE IF EXISTS WORKER_NODE;
CREATE TABLE WORKER_NODE
(
ID BIGINT NOT NULL AUTO_INCREMENT COMMENT 'auto increment id',
HOST_NAME VARCHAR(64) NOT NULL COMMENT 'host name',
PORT VARCHAR(64) NOT NULL COMMENT 'port',
TYPE INT NOT NULL COMMENT 'node type: ACTUAL or CONTAINER',
LAUNCH_DATE DATE NOT NULL COMMENT 'launch date',
MODIFIED TIMESTAMP NOT NULL COMMENT 'modified time',
CREATED TIMESTAMP NOT NULL COMMENT 'created time',
PRIMARY KEY(ID)
)
 COMMENT='DB WorkerID Assigner for UID Generator',ENGINE = INNODB;

在使用的数据库中创建表WORKER_NODE。(如果数据库版本较低,需要将TIMESTAMP类型换成datetime(3),一劳永逸的做法就是直接将TIMESTAMP换成datetime(3))

引入Maven依赖

<dependencies>
	<dependency>
		<groupId>org.springframework.bootgroupId>
		<artifactId>spring-boot-starter-webartifactId>
	dependency>
	<dependency>
		<groupId>org.mybatis.spring.bootgroupId>
		<artifactId>mybatis-spring-boot-starterartifactId>
		<version>2.1.0version>
	dependency>
	<dependency>
		<groupId>org.springframework.bootgroupId>
		<artifactId>spring-boot-starter-testartifactId>
		<scope>testscope>
	dependency>

	<dependency>
		<groupId>mysqlgroupId>
		<artifactId>mysql-connector-javaartifactId>
		<scope>runtimescope>
		<version>8.0.12version>
	dependency>

	<dependency>
		<groupId>com.alibabagroupId>
		<artifactId>druid-spring-boot-starterartifactId>
		<version>1.1.9version>
	dependency>

	<dependency>
		<groupId>com.baidu.fsggroupId>
		<artifactId>uid-generatorartifactId>
		<version>1.0.0-SNAPSHOTversion>
	dependency>
dependencies>

互联网jar包引入(本文用的是此方式)

在maven仓库只找到了一个jar包。

<dependency>
    <groupId>com.xfvape.uidgroupId>
    <artifactId>uid-generatorartifactId>
    <version>0.0.4-RELEASEversion>
dependency>
排除冲突的依赖

uid-generator中依赖了logback和mybatis。一般在项目搭建过程中,springboot中已经有了logback依赖,mybatis会作为单独的依赖引入。如果版本和uid-generator中的依赖不一致的话,就会导致冲突。为了防止出现这些问题,直接排除一劳永逸。

<dependency>
    <groupId>com.baidu.fsggroupId>
    <artifactId>uid-generatorartifactId>
    <version>1.0.0-SNAPSHOTversion>
    <exclusions>
        <exclusion>
            <groupId>org.mybatisgroupId>
            <artifactId>*artifactId>
        exclusion>
    exclusions>
dependency>

排除冲突的依赖如下:(使用本地项目引入的方式也需要排除以下依赖)

<dependency>
    <groupId>com.xfvape.uidgroupId>
    <artifactId>uid-generatorartifactId>
    <version>0.0.4-RELEASEversion>
    <exclusions>
        <exclusion>
            <groupId>org.mybatisgroupId>
            <artifactId>*artifactId>
        exclusion>
    exclusions>
dependency>

我这里用的是mybatis-plus,mybatis-plus官方要求的是,如果要使用mybatis-plus,就不能再单独引入mybatis了,所以我这里也是必须排除mybatis的。

配置SpringBoot核心配置

修改配置文件application.properties(注意MySQL地址、数据库名称账户等于之前建表的保持一致)

server.port=9999
spring.datasource.url=jdbc:mysql://*.*.*.*:3306/baiduUidGenerator?useUnicode=true&characterEncoding=utf-8&useSSL=false
spring.datasource.username=root
spring.datasource.password=*
spring.datasource.driver-class-name=com.mysql.jdbc.Driver
mybatis.mapper-locations=classpath:mapper/*.xml
mybatis.configuration.map-underscore-to-camel-case=true

@MapperScan的dao层接口扫描:

核心对象装配为spring的bean。

uid-generator提供了两种生成器: DefaultUidGenerator、CachedUidGenerator。

如对UID生成性能有要求, 请使用CachedUidGenerator。这里装配CachedUidGenerator,DefaultUidGenerator装配方式是一样的。

自定义DisposableWorkerIdAssigner

将源码DisposableWorkerIdAssigner类加入到自己的项目中,并将其中的mapper方法修改成自己项目中的方法与启动类同级目录新建DisposableWorkerIdAssigner内容如下


public class DisposableWorkerIdAssigner implements WorkerIdAssigner {
    private static final Logger LOGGER = LoggerFactory.getLogger(DisposableWorkerIdAssigner.class);

    private WorkerNodeMapper workerNodeMapper;

    public long assignWorkerId() {

        WorkerNodeEntity workerNodeEntity = buildWorkerNode();

        workerNodeMapper.addWorkerNode(workerNodeEntity);
        LOGGER.info("Add worker node:" + workerNodeEntity);

        return workerNodeEntity.getId();
    }

    private WorkerNodeEntity buildWorkerNode() {
        WorkerNodeEntity workerNodeEntity = new WorkerNodeEntity();
        if (DockerUtils.isDocker()) {
            workerNodeEntity.setType(WorkerNodeType.CONTAINER.value());
            workerNodeEntity.setHostName(DockerUtils.getDockerHost());
            workerNodeEntity.setPort(DockerUtils.getDockerPort());
        } else {
            workerNodeEntity.setType(WorkerNodeType.ACTUAL.value());
            workerNodeEntity.setHostName(NetUtils.getLocalAddress());
            workerNodeEntity.setPort(System.currentTimeMillis() + "-" + RandomUtils.nextInt(100000));
        }
        return workerNodeEntity;
    }
}

public class UidGeneratorConfig {

public DisposableWorkerIdAssigner disposableWorkerIdAssigner(){
	DisposableWorkerIdAssigner disposableWorkerIdAssigner = new DisposableWorkerIdAssigner();
	return  disposableWorkerIdAssigner;
}

	public CachedUidGenerator initCachedUidGenerator(WorkerIdAssigner workerIdAssigner) {
		CachedUidGenerator cachedUidGenerator = new CachedUidGenerator();
		cachedUidGenerator.setWorkerIdAssigner(workerIdAssigner);

		cachedUidGenerator.setBoostPower(3);
		cachedUidGenerator.setPaddingFactor(50);
		cachedUidGenerator.setScheduleInterval(60L);

		return cachedUidGenerator;
	}
}
详细配置信息控制

    public DefaultUidGenerator defaultUidGenerator(WorkerIdAssigner disposableWorkerIdAssigner) {
        DefaultUidGenerator defaultUidGenerator = new DefaultUidGenerator();
     defaultUidGenerator.setWorkerIdAssigner(disposableWorkerIdAssigner);

        defaultUidGenerator.setTimeBits(32);

        defaultUidGenerator.setWorkerBits(22);

        defaultUidGenerator.setSeqBits(9);
        defaultUidGenerator.setEpochStr("2020-01-01");

        return defaultUidGenerator;
    }

    public CachedUidGenerator cachedUidGenerator(WorkerIdAssigner disposableWorkerIdAssigner) {
        CachedUidGenerator cachedUidGenerator = new CachedUidGenerator();
        cachedUidGenerator.setWorkerIdAssigner(disposableWorkerIdAssigner);

        cachedUidGenerator.setTimeBits(32);

        cachedUidGenerator.setWorkerBits(22);

        cachedUidGenerator.setSeqBits(9);
        cachedUidGenerator.setEpochStr("2020-01-01");

        cachedUidGenerator.setBoostPower(3);

        cachedUidGenerator.setScheduleInterval(60L);

        return cachedUidGenerator;
    }

mapper服务接口

与启动类同级目录新建WorkerNodeMapper内容如下


public interface WorkerNodeMapper {

    WorkerNodeEntity getWorkerNodeByHostPort( String host,  String port);

    void addWorkerNode(WorkerNodeEntity workerNodeEntity);
}

WorkerNodeMapper


<mapper namespace="org.zxp.uidgeneratortest.WorkerNodeMapper">
    <resultMap id="workerNodeRes"
               type="com.baidu.fsg.uid.worker.entity.WorkerNodeEntity">
        <id column="ID" jdbcType="BIGINT" property="id"/>
        <result column="HOST_NAME" jdbcType="VARCHAR" property="hostName"/>
        <result column="PORT" jdbcType="VARCHAR" property="port"/>
        <result column="TYPE" jdbcType="INTEGER" property="type"/>
        <result column="LAUNCH_DATE" jdbcType="DATE" property="launchDate"/>
        <result column="MODIFIED" jdbcType="TIMESTAMP" property="modified"/>
        <result column="CREATED" jdbcType="TIMESTAMP" property="created"/>
    resultMap>

    <insert id="addWorkerNode" useGeneratedKeys="true" keyProperty="id"
            parameterType="com.baidu.fsg.uid.worker.entity.WorkerNodeEntity">
		INSERT INTO WORKER_NODE
		(HOST_NAME,
		PORT,
		TYPE,
		LAUNCH_DATE,
		MODIFIED,
		CREATED)
		VALUES (
		#{hostName},
		#{port},
		#{type},
		#{launchDate},
		NOW(),
		NOW())
	insert>

    <select id="getWorkerNodeByHostPort" resultMap="workerNodeRes">
		SELECT
		ID,
		HOST_NAME,
		PORT,
		TYPE,
		LAUNCH_DATE,
		MODIFIED,
		CREATED
		FROM
		WORKER_NODE
		WHERE
		HOST_NAME = #{host} AND PORT = #{port}
	select>
mapper>

创建UidGenService逻辑类


public class UidGenService {

    private UidGenerator uidGenerator;
    public long getUid() {
        return uidGenerator.getUID();
    }
}

分享资源

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-4Yf1KiFl-1692670384862)(https://pic.imgdb.cn/item/64d0dc6a1ddac507cc857b30.png)]
获取以上资源请访问开源项目 点击跳转

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/914356.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

启英泰伦通话降噪方案,采用深度学习降噪算法,让通话更清晰

生活中的通话应用场景无处不在&#xff0c;如电话、对讲机、远程会议、在线教育等。普遍存在的问题是环境噪音、干扰声导致通话声音不清晰&#xff0c;语音失真等。 为了解决这一问题&#xff0c;启英泰伦基于自适应线性滤波联合非线性滤波的回声消除方案和基于深度学习的降噪…

基于CNN卷积神经网络的目标识别matlab仿真,数据库采用cifar-10

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 5.算法完整程序工程 1.算法运行效果图预览 2.算法运行软件版本 MATLAB2022a 3.部分核心程序 ....................................................................... %定义网络层 lay…

vue项目配置git提交规范

vue项目配置git提交规范 一、背景介绍二、husky、lint-staged、commitlint/cli1.husky2.lint-staged3.commitlint/cli 三、具体使用1.安装依赖2.运行初始化脚本3.在package.json中配置lint-staged4.根目录新增 commitlint.config.js 4.提交测试1.提示信息格式错误时2.eslint校验…

Android Studio调试出现错误时,无法定位错误信息解决办法

做项目时运行项目会出现问题&#xff0c;但是找不到具体位置&#xff0c;如下图所示&#xff1a;感觉是不是很懵逼~&#xff0c;Log也没有显示是哪里的问题 解决方案&#xff0c;在右侧导航栏中选择Gradle——app——build&#xff0c;然后点击运行 运行结果如下&#xff0c;很…

LLMs训练的算力优化Computational challenges of training LLMs

当您尝试训练大型语言模型时&#xff0c;您仍然经常遇到的最常见问题之一是内存不足。如果您曾尝试在Nvidia GPU上训练或甚至只是加载模型&#xff0c;那么这个错误消息可能看起来很熟悉。 CUDA&#xff0c;即Compute Unified Device Architecture的缩写&#xff0c;是为Nvid…

Lnton羚通云算力平台OpenCV-PythonCanny边缘检测教程

Canny 边缘检测是一种经典的边缘检测算法&#xff0c;由 John F. Canny 在 1986 年提出。它被广泛应用于计算机视觉和图像处理领域&#xff0c;用于检测图像中的边缘。 ​【原理】 1. 去噪 由于边缘检测非常容易收到图像的噪声影响&#xff0c;第一步使用 5x5 高斯滤波去除图…

【Linux】数据链路层:以太网协议

约束不等于压迫&#xff0c;冷静和理性不等于冷淡和麻木。 文章目录 一、以太网帧 和 局域网转发数据包1.局域网转发的原理&#xff08;基于以太网协议&#xff09;2.以太网MTU与MAC地址 二、局域网中的数据碰撞1.如何解决局域网中的数据碰撞&#xff1f;&#xff08;碰撞检测和…

[保研/考研机试] KY223 二叉排序树 华中科技大学复试上机题 C++实现

题目链接&#xff1a; 二叉排序树_牛客题霸_牛客网输入一系列整数&#xff0c;建立二叉排序树&#xff0c;并进行前序&#xff0c;中序&#xff0c;后序遍历。。题目来自【牛客题霸】https://www.nowcoder.com/share/jump/437195121692722441741 描述 输入一系列整数&#x…

springMVC之视图

文章目录 前言一、ThymeleafView二、转发视图三、重定向视图四、视图控制器view-controller五、补充总结 前言 SpringMVC中的视图是View接口&#xff0c;视图的作用渲染数据&#xff0c;将模型Model中的数据展示给用户。 SpringMVC视图的种类很多&#xff0c;默认有转发视图和…

原生轮播图的实现

<!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>轮播图</title><style>* {margin: 0;pad…

【网络】IP网络层和数据链路层

IP协议详解 1.概念 1.1 四层模型 应用层&#xff1a;解决如何传输数据&#xff08;依照什么格式/协议处理数据&#xff09;的问题传输层&#xff1a;解决可靠性问题网络层&#xff1a;数据往哪里传&#xff0c;怎么找到目标主机数据链路层&#xff08;物理层&#xff09;&…

C++:list使用以及模拟实现

list使用以及模拟实现 list介绍list常用接口1.构造2.迭代器3.容量4.访问数据5.增删查改6.迭代器失效 list模拟实现1.迭代器的实现2.完整代码 list介绍 list是一个类模板&#xff0c;加<类型>实例化才是具体的类。list是可以在任意位置进行插入和删除的序列式容器。list的…

MySQL不停重启问题

MySQL不停的自动杀掉自动重启 看一下log日志 my.cnf 里配置的 log_error /var/log/mysqld.log vim /var/log/mysqld.log 报的错误只是 [ERROR] Cant start server: Bind on TCP/IP port: Address already in use [ERROR] Do you already have another mysqld server …

LLMs高效的多 GPU 计算策略Efficient multi-GPU compute strategies

很有可能在某个时候&#xff0c;您需要将模型训练工作扩展到超过一个GPU。在上一个视频中&#xff0c;我强调了当您的模型变得太大而无法适应单个GPU时&#xff0c;您需要使用多GPU计算策略。但即使您的模型确实适合单个GPU&#xff0c;使用多个GPU加速训练也有好处。即使您正在…

Java 项目日志实例:综合应用

点击下方关注我&#xff0c;然后右上角点击...“设为星标”&#xff0c;就能第一时间收到更新推送啦~~~ 本文介绍 JCL(java common logging) 和 SLF4J 分别与 Log4j 结合使用的示例。 1 JCL Log4j 使用示例 1、JCL(java common logging) Log4j 介绍 使用 commons-logging 的 …

Java 实战项目-SpringBoot+Vue 的智慧养老平台,附源码、教程

博主介绍&#xff1a;✌程序员徐师兄、7年大厂程序员经历。全网粉丝30W,Csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ 文章目录 1.研究背景2. 技术栈3.系统分析4系统设计4.1 软件功能模块设计4.2数据库设计与实现 5系统详细设计…

bode100测量频率响应的基本原理

当使用Bode 100进行频率响应测量时&#xff0c;它会同时测量幅频响应曲线和相频响应曲线。下面是对这两个曲线测量方法的进一步解释&#xff1a; 幅频响应曲线测量&#xff1a; 幅频响应曲线描述了系统在不同频率下输入信号的幅度变化。Bode 100通过以下步骤测量并绘制幅频响应…

基于Jenkins自动打包并部署Tomcat环境

目录 1、配置git主机 2、配置jenkins主机 3、配置web主机 4、新建Maven项目 5、验证 Jenkins 自动打包部署结果 Jenkins 的工作原理是先将源代码从 SVN/Git 版本控制系统中拷贝一份到本地&#xff0c;然后根据设置的脚本调用Maven进行 build&#xff08;构建&#xff09;。…

框架分析(2)-React

框架分析&#xff08;2&#xff09;-React 专栏介绍React核心思想关键特性和功能组件化开发单向数据流JSX语法强大的生态系统 优缺点分析优点缺点 专栏介绍 link 主要对目前市面上常见的框架进行分析和总结&#xff0c;希望有兴趣的小伙伴们可以看一下&#xff0c;会持续更新的…

网络:RIP协议

1. RIP协议原理介绍 RIP是一种比较简单的内部网关协议&#xff08;IGP协议&#xff09;&#xff0c;RIP基于距离矢量的贝尔曼-福特算法(Bellman - Ford)来计算到达目的网络的最佳路径。最初的RIP协议开发时间较早&#xff0c;所以在带宽、配置和管理方面的要求也较低。 路由器运…