在使用爬虫爬取数据的时候,当需要爬取的数据量比较大,且急需很快获取到数据的时候,可以考虑将单线程的爬虫写成多线程的爬虫。下面来学习一些它的基础知识和代码编写方法。
一、进程和线程
进程可以理解为是正在运行的程序的实例。进程是拥有资源的独立单位,而线程不是独立的单位。由于每一次调度进程的开销比较大,为此才引入的线程。一个进程可以拥有多个线程,一个进程中可以同时存在多个线程,这些线程共享该进程的资源,线程的切换消耗是很小的。因此在操作系统中引入进程的目的是更好地使多道程序并发执行,提高资源利用率和系统吞吐量;而引入线程的目的则是减小程序在并发执行时所付出的时空开销,提高操作系统的并发性能。
下面用简单的例子进行描述,打开本地计算机的”任务管理器”如图1所示,这些正在运行的程序叫作进程。如果将一个进程比喻成一个工作,指定10个人来做这份工作,这10个人就是10个线程。因此,在一定的范围内,多线程效率比单线程效率更高。
图1.任务管理器
二、Python中的多线程与单线程
在我们平时学习的过程中,使用的主要是单线程爬虫。一般来说,如果爬取的资源不是特别大,使用单线程即可。在Python中,默认情况下是单线程的,简单理解为:代码是按顺序依次运行的,比如先运行第一行代码,再运行第二行,依次类推。在前面章节所学习知识中,都是以单线程的形式实践的。
举个例子,批量下载某网站的图片,由于下载图片是一个耗时的操作,如果依然采用单线程的方式下载,那么效率就会特别低,意味着需要消耗更多的时间等待下载。为了节约时间,这时候我们就可以考虑使用多线程的方式来下载图片。
threading模块是Python中专门用来做多线程编程的模块,它对thread进行了封装,使用更加方便。例如需要对写代码和玩游戏两个事件使用多线程进行,案例代码如下。
import threading
import time
# 定义第一个
def coding():
for x in range(3):
print('%s正在写代码\n' % x)
time.sleep(1)
# 定义第二个
def playing():
for x in range(3):
print('%s正在玩游戏\n' % x)
time.sleep(1)
# 如果使用多线程执行
def multi_thread():
start = time.time()
# Thread创建第一个线程,target参数为函数命
t1 = threading.Thread(target=coding)
t1.start() # 启动线程
# 创建第二个线程
t2 = threading.Thread(target=playing)
t2.start()
# join是确保thread子线程执行完毕后才能执行下一个线程
t1.join()
t2.join()
end = time.time()
running_time = end - start
print('总共运行时间 : %.5f 秒' % running_time)
# 执行
if __name__ == '__main__':
multi_thread() # 执行单线程
运行结果如图2所示。
图2.多线程运行结果
那么执行单线程会消耗多少时间,案例代码如下所示。
import time
# 定义第一个
def coding():
for x in range(3):
print('%s正在写代码\n' % x)
time.sleep(1)
# 定义第二个
def playing():
start = time.time()
for x in range(3):
print('%s正在玩游戏\n' % x)
time.sleep(1)
end = time.time()
running_time = end - start
print('总共运行时间 : %.5f 秒' % running_time)
def single_thread():
coding()
playing()
# 执行
if __name__ == '__main__':
single_thread() # 执行单线程
运行结果如图3所示。
图3.单线程运行结果
经过以上多线程和单线程的运行结果,可以看出多线程中写代码和玩游戏是一起执行的,单线程中则是先写代码再玩游戏。从时间上来说,可能只有细微的差距,当执行工作量很大的时候,便会发现多线程消耗的时间会更少,从这个案例中我们也可以知道,当所需要执行的任务并不多的时候,只需要编写单线程即可。
三、单线程改为多线程
以某直播的图片爬取为例,案例代码如下。
import requests
from lxml import etree
import time
import os
dirpath = '图片/'
if not os.path.exists(dirpath):
os.mkdir(dirpath) # 创建文件夹
header = {
'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_13_3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/65.0.3325.162 Safari/537.36'
}
def get_photo():
url = 'https://www.huya.com/g/4079/' # 目标网站
response = requests.get(url=url, headers=header) # 发送请求
data = etree.HTML(response.text) # 转化为html格式
return data
def jiexi():
data = get_photo()
image_url = data.xpath('//a//img//@data-original')
image_name = data.xpath('//a//img[@class="pic"]//@alt')
for ur, name in zip(image_url, image_name):
url = ur.replace('?imageview/4/0/w/338/h/190/blur/1', '')
title = name + '.jpg'
response = requests.get(url=url, headers=header) # 在此发送新的请求
with open(dirpath + title, 'wb') as f:
f.write(response.content)
print("下载成功" + name)
time.sleep(2)
if __name__ == '__main__':
jiexi()
如果需要修改为多线程爬虫,只需要修改主函数即可,例如创建4个线程进行爬取,案例代码如下所示。
if __name__ == "__main__":
threads = []
start = time.time()
# 创建四个进程
for i in range(1, 5):
thread = threading.Thread(target=jiexi(), args=(i,))
threads.append(thread)
thread.start()
for thread in threads:
thread.join()
end = time.time()
running_time = end - start
print('总共消耗时间 : %.5f 秒' % running_time)
print("全部完成!") # 主程序
关于Python学习指南
学好 Python 不论是就业还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划。最后给大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!
包括:Python激活码+安装包、Python web开发,Python爬虫,Python数据分析,人工智能、自动化办公等学习教程。带你从零基础系统性的学好Python!
👉Python所有方向的学习路线👈
Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。(全套教程文末领取)
👉Python学习视频600合集👈
观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
温馨提示:篇幅有限,已打包文件夹,获取方式在:文末
👉Python70个实战练手案例&源码👈
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
👉Python大厂面试资料👈
我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
👉Python副业兼职路线&方法👈
学好 Python 不论是就业还是做副业赚钱都不错,但要学会兼职接单还是要有一个学习规划。
👉 这份完整版的Python全套学习资料已经上传,朋友们如果需要可以扫描下方CSDN官方认证二维码或者点击链接免费领取【保证100%免费
】
点击免费领取《CSDN大礼包》:Python入门到进阶资料 & 实战源码 & 兼职接单方法 安全链接免费领取