基于Pytorch实现的声纹识别系统

news2024/11/23 15:53:30

前言

本项目使用了EcapaTdnn、ResNetSE、ERes2Net、CAM++等多种先进的声纹识别模型,不排除以后会支持更多模型,同时本项目也支持了MelSpectrogram、Spectrogram、MFCC、Fbank等多种数据预处理方法,使用了ArcFace Loss,ArcFace loss:Additive Angular Margin Loss(加性角度间隔损失函数),对应项目中的AAMLoss,对特征向量和权重归一化,对θ加上角度间隔m,角度间隔比余弦间隔在对角度的影响更加直接,除此之外,还支持AMLoss、ARMLoss、CELoss等多种损失函数。

源码地址:VoiceprintRecognition-Pytorch

使用环境:

  • Anaconda 3
  • Python 3.8
  • Pytorch 1.13.1
  • Windows 10 or Ubuntu 18.04

项目特性

  1. 支持模型:EcapaTdnn、TDNN、Res2Net、ResNetSE、ERes2Net、CAM++
  2. 支持池化层:AttentiveStatsPool(ASP)、SelfAttentivePooling(SAP)、TemporalStatisticsPooling(TSP)、TemporalAveragePooling(TAP)、TemporalStatsPool(TSTP)
  3. 支持损失函数:AAMLoss、AMLoss、ARMLoss、CELoss
  4. 支持预处理方法:MelSpectrogram、Spectrogram、MFCC、Fbank

模型论文:

  • EcapaTdnn:ECAPA-TDNN: Emphasized Channel Attention, Propagation and Aggregation in TDNN Based Speaker Verification
  • PANNS:PANNs: Large-Scale Pretrained Audio Neural Networks for Audio Pattern Recognition
  • TDNN:Prediction of speech intelligibility with DNN-based performance measures
  • Res2Net:Res2Net: A New Multi-scale Backbone Architecture
  • ResNetSE:Squeeze-and-Excitation Networks
  • CAMPPlus:CAM++: A Fast and Efficient Network for Speaker Verification Using Context-Aware Masking
  • ERes2Net:An Enhanced Res2Net with Local and Global Feature Fusion for Speaker Verification

模型下载

模型Params(M)预处理方法数据集train speakersthresholdEERMinDCF
CAM++7.5FbankCN-Celeb27960.260.095570.53516
ERes2Net8.2FbankCN-Celeb2796
ResNetSE9.4FbankCN-Celeb27960.200.101490.55185
EcapaTdnn6.7FbankCN-Celeb27960.240.101630.56543
TDNN3.2FbankCN-Celeb27960.230.121820.62141
Res2Net6.6FbankCN-Celeb27960.220.143900.67961
ERes2Net8.2Fbank其他数据集20W0.360.029360.18355
CAM++7.5Fbank其他数据集20W0.290.047650.31436

说明:

  1. 评估的测试集为CN-Celeb的测试集,包含196个说话人。

安装环境

  • 首先安装的是Pytorch的GPU版本,如果已经安装过了,请跳过。
conda install pytorch==1.13.1 torchvision==0.14.1 torchaudio==0.13.1 pytorch-cuda=11.6 -c pytorch -c nvidia
  • 安装ppvector库。

使用pip安装,命令如下:

python -m pip install mvector -U -i https://pypi.tuna.tsinghua.edu.cn/simple

建议源码安装,源码安装能保证使用最新代码。

git clone https://github.com/yeyupiaoling/VoiceprintRecognition-Pytorch.git
cd VoiceprintRecognition-Pytorch/
python setup.py install

创建数据

本教程笔者使用的是CN-Celeb,这个数据集一共有约3000个人的语音数据,有65W+条语音数据,下载之后要解压数据集到dataset目录,另外如果要评估,还需要下载CN-Celeb的测试集。如果读者有其他更好的数据集,可以混合在一起使用,但最好是要用python的工具模块aukit处理音频,降噪和去除静音。

首先是创建一个数据列表,数据列表的格式为<语音文件路径\t语音分类标签>,创建这个列表主要是方便之后的读取,也是方便读取使用其他的语音数据集,语音分类标签是指说话人的唯一ID,不同的语音数据集,可以通过编写对应的生成数据列表的函数,把这些数据集都写在同一个数据列表中。

执行create_data.py程序完成数据准备。

python create_data.py

执行上面的程序之后,会生成以下的数据格式,如果要自定义数据,参考如下数据列表,前面是音频的相对路径,后面的是该音频对应的说话人的标签,就跟分类一样。自定义数据集的注意,测试数据列表的ID可以不用跟训练的ID一样,也就是说测试的数据的说话人可以不用出现在训练集,只要保证测试数据列表中同一个人相同的ID即可。

dataset/CN-Celeb2_flac/data/id11999/recitation-03-019.flac      2795
dataset/CN-Celeb2_flac/data/id11999/recitation-10-023.flac      2795
dataset/CN-Celeb2_flac/data/id11999/recitation-06-025.flac      2795
dataset/CN-Celeb2_flac/data/id11999/recitation-04-014.flac      2795
dataset/CN-Celeb2_flac/data/id11999/recitation-06-030.flac      2795
dataset/CN-Celeb2_flac/data/id11999/recitation-10-032.flac      2795
dataset/CN-Celeb2_flac/data/id11999/recitation-06-028.flac      2795
dataset/CN-Celeb2_flac/data/id11999/recitation-10-031.flac      2795
dataset/CN-Celeb2_flac/data/id11999/recitation-05-003.flac      2795
dataset/CN-Celeb2_flac/data/id11999/recitation-04-017.flac      2795
dataset/CN-Celeb2_flac/data/id11999/recitation-10-016.flac      2795
dataset/CN-Celeb2_flac/data/id11999/recitation-09-001.flac      2795
dataset/CN-Celeb2_flac/data/id11999/recitation-05-010.flac      2795

修改预处理方法

配置文件中默认使用的是Fbank预处理方法,如果要使用其他预处理方法,可以修改配置文件中的安装下面方式修改,具体的值可以根据自己情况修改。如果不清楚如何设置参数,可以直接删除该部分,直接使用默认值。

# 数据预处理参数
preprocess_conf:
  # 音频预处理方法,支持:MelSpectrogram、Spectrogram、MFCC、Fbank
  feature_method: 'Fbank'
  # 设置API参数,更参数查看对应API,不清楚的可以直接删除该部分,直接使用默认值
  method_args:
    sample_frequency: 16000
    num_mel_bins: 80

训练模型

使用train.py训练模型,本项目支持多个音频预处理方式,通过configs/ecapa_tdnn.yml配置文件的参数preprocess_conf.feature_method可以指定,MelSpectrogram为梅尔频谱,Spectrogram为语谱图,MFCC梅尔频谱倒谱系数等等。通过参数augment_conf_path可以指定数据增强方式。训练过程中,会使用VisualDL保存训练日志,通过启动VisualDL可以随时查看训练结果,启动命令visualdl --logdir=log --host 0.0.0.0

# 单卡训练
CUDA_VISIBLE_DEVICES=0 python train.py
# 多卡训练
CUDA_VISIBLE_DEVICES=0,1 torchrun --standalone --nnodes=1 --nproc_per_node=2 train.py

训练输出日志:

[2023-08-05 09:52:06.497988 INFO   ] utils:print_arguments:13 - ----------- 额外配置参数 -----------
[2023-08-05 09:52:06.498094 INFO   ] utils:print_arguments:15 - configs: configs/ecapa_tdnn.yml
[2023-08-05 09:52:06.498149 INFO   ] utils:print_arguments:15 - do_eval: True
[2023-08-05 09:52:06.498191 INFO   ] utils:print_arguments:15 - local_rank: 0
[2023-08-05 09:52:06.498230 INFO   ] utils:print_arguments:15 - pretrained_model: None
[2023-08-05 09:52:06.498269 INFO   ] utils:print_arguments:15 - resume_model: None
[2023-08-05 09:52:06.498306 INFO   ] utils:print_arguments:15 - save_model_path: models/
[2023-08-05 09:52:06.498342 INFO   ] utils:print_arguments:15 - use_gpu: True
[2023-08-05 09:52:06.498378 INFO   ] utils:print_arguments:16 - ------------------------------------------------
[2023-08-05 09:52:06.513761 INFO   ] utils:print_arguments:18 - ----------- 配置文件参数 -----------
[2023-08-05 09:52:06.513906 INFO   ] utils:print_arguments:21 - dataset_conf:
[2023-08-05 09:52:06.513957 INFO   ] utils:print_arguments:24 -         dataLoader:
[2023-08-05 09:52:06.513995 INFO   ] utils:print_arguments:26 -                 batch_size: 64
[2023-08-05 09:52:06.514031 INFO   ] utils:print_arguments:26 -                 num_workers: 4
[2023-08-05 09:52:06.514066 INFO   ] utils:print_arguments:28 -         do_vad: False
[2023-08-05 09:52:06.514101 INFO   ] utils:print_arguments:28 -         enroll_list: dataset/enroll_list.txt
[2023-08-05 09:52:06.514135 INFO   ] utils:print_arguments:24 -         eval_conf:
[2023-08-05 09:52:06.514169 INFO   ] utils:print_arguments:26 -                 batch_size: 1
[2023-08-05 09:52:06.514203 INFO   ] utils:print_arguments:26 -                 max_duration: 20
[2023-08-05 09:52:06.514237 INFO   ] utils:print_arguments:28 -         max_duration: 3
[2023-08-05 09:52:06.514274 INFO   ] utils:print_arguments:28 -         min_duration: 0.5
[2023-08-05 09:52:06.514308 INFO   ] utils:print_arguments:28 -         noise_aug_prob: 0.2
[2023-08-05 09:52:06.514342 INFO   ] utils:print_arguments:28 -         noise_dir: dataset/noise
[2023-08-05 09:52:06.514374 INFO   ] utils:print_arguments:28 -         num_speakers: 3242
[2023-08-05 09:52:06.514408 INFO   ] utils:print_arguments:28 -         sample_rate: 16000
[2023-08-05 09:52:06.514441 INFO   ] utils:print_arguments:28 -         speed_perturb: True
[2023-08-05 09:52:06.514475 INFO   ] utils:print_arguments:28 -         target_dB: -20
[2023-08-05 09:52:06.514508 INFO   ] utils:print_arguments:28 -         train_list: dataset/train_list.txt
[2023-08-05 09:52:06.514542 INFO   ] utils:print_arguments:28 -         trials_list: dataset/trials_list.txt
[2023-08-05 09:52:06.514575 INFO   ] utils:print_arguments:28 -         use_dB_normalization: True
[2023-08-05 09:52:06.514609 INFO   ] utils:print_arguments:21 - loss_conf:
[2023-08-05 09:52:06.514643 INFO   ] utils:print_arguments:24 -         args:
[2023-08-05 09:52:06.514678 INFO   ] utils:print_arguments:26 -                 easy_margin: False
[2023-08-05 09:52:06.514713 INFO   ] utils:print_arguments:26 -                 margin: 0.2
[2023-08-05 09:52:06.514746 INFO   ] utils:print_arguments:26 -                 scale: 32
[2023-08-05 09:52:06.514779 INFO   ] utils:print_arguments:24 -         margin_scheduler_args:
[2023-08-05 09:52:06.514814 INFO   ] utils:print_arguments:26 -                 final_margin: 0.3
[2023-08-05 09:52:06.514848 INFO   ] utils:print_arguments:28 -         use_loss: AAMLoss
[2023-08-05 09:52:06.514882 INFO   ] utils:print_arguments:28 -         use_margin_scheduler: True
[2023-08-05 09:52:06.514915 INFO   ] utils:print_arguments:21 - model_conf:
[2023-08-05 09:52:06.514950 INFO   ] utils:print_arguments:24 -         backbone:
[2023-08-05 09:52:06.514984 INFO   ] utils:print_arguments:26 -                 embd_dim: 192
[2023-08-05 09:52:06.515017 INFO   ] utils:print_arguments:26 -                 pooling_type: ASP
[2023-08-05 09:52:06.515050 INFO   ] utils:print_arguments:24 -         classifier:
[2023-08-05 09:52:06.515084 INFO   ] utils:print_arguments:26 -                 num_blocks: 0
[2023-08-05 09:52:06.515118 INFO   ] utils:print_arguments:21 - optimizer_conf:
[2023-08-05 09:52:06.515154 INFO   ] utils:print_arguments:28 -         learning_rate: 0.001
[2023-08-05 09:52:06.515188 INFO   ] utils:print_arguments:28 -         optimizer: Adam
[2023-08-05 09:52:06.515221 INFO   ] utils:print_arguments:28 -         scheduler: CosineAnnealingLR
[2023-08-05 09:52:06.515254 INFO   ] utils:print_arguments:28 -         scheduler_args: None
[2023-08-05 09:52:06.515289 INFO   ] utils:print_arguments:28 -         weight_decay: 1e-06
[2023-08-05 09:52:06.515323 INFO   ] utils:print_arguments:21 - preprocess_conf:
[2023-08-05 09:52:06.515357 INFO   ] utils:print_arguments:28 -         feature_method: MelSpectrogram
[2023-08-05 09:52:06.515390 INFO   ] utils:print_arguments:24 -         method_args:
[2023-08-05 09:52:06.515426 INFO   ] utils:print_arguments:26 -                 f_max: 14000.0
[2023-08-05 09:52:06.515460 INFO   ] utils:print_arguments:26 -                 f_min: 50.0
[2023-08-05 09:52:06.515493 INFO   ] utils:print_arguments:26 -                 hop_length: 320
[2023-08-05 09:52:06.515527 INFO   ] utils:print_arguments:26 -                 n_fft: 1024
[2023-08-05 09:52:06.515560 INFO   ] utils:print_arguments:26 -                 n_mels: 64
[2023-08-05 09:52:06.515593 INFO   ] utils:print_arguments:26 -                 sample_rate: 16000
[2023-08-05 09:52:06.515626 INFO   ] utils:print_arguments:26 -                 win_length: 1024
[2023-08-05 09:52:06.515660 INFO   ] utils:print_arguments:21 - train_conf:
[2023-08-05 09:52:06.515694 INFO   ] utils:print_arguments:28 -         log_interval: 100
[2023-08-05 09:52:06.515728 INFO   ] utils:print_arguments:28 -         max_epoch: 30
[2023-08-05 09:52:06.515761 INFO   ] utils:print_arguments:30 - use_model: EcapaTdnn
[2023-08-05 09:52:06.515794 INFO   ] utils:print_arguments:31 - ------------------------------------------------
······
===============================================================================================
Layer (type:depth-idx)                        Output Shape              Param #
===============================================================================================
Sequential                                    [1, 9726]                 --
├─EcapaTdnn: 1-1                              [1, 192]                  --
│    └─Conv1dReluBn: 2-1                      [1, 512, 98]              --
│    │    └─Conv1d: 3-1                       [1, 512, 98]              163,840
│    │    └─BatchNorm1d: 3-2                  [1, 512, 98]              1,024
│    └─Sequential: 2-2                        [1, 512, 98]              --
│    │    └─Conv1dReluBn: 3-3                 [1, 512, 98]              263,168
│    │    └─Res2Conv1dReluBn: 3-4             [1, 512, 98]              86,912
│    │    └─Conv1dReluBn: 3-5                 [1, 512, 98]              263,168
│    │    └─SE_Connect: 3-6                   [1, 512, 98]              262,912
│    └─Sequential: 2-3                        [1, 512, 98]              --
│    │    └─Conv1dReluBn: 3-7                 [1, 512, 98]              263,168
│    │    └─Res2Conv1dReluBn: 3-8             [1, 512, 98]              86,912
│    │    └─Conv1dReluBn: 3-9                 [1, 512, 98]              263,168
│    │    └─SE_Connect: 3-10                  [1, 512, 98]              262,912
│    └─Sequential: 2-4                        [1, 512, 98]              --
│    │    └─Conv1dReluBn: 3-11                [1, 512, 98]              263,168
│    │    └─Res2Conv1dReluBn: 3-12            [1, 512, 98]              86,912
│    │    └─Conv1dReluBn: 3-13                [1, 512, 98]              263,168
│    │    └─SE_Connect: 3-14                  [1, 512, 98]              262,912
│    └─Conv1d: 2-5                            [1, 1536, 98]             2,360,832
│    └─AttentiveStatsPool: 2-6                [1, 3072]                 --
│    │    └─Conv1d: 3-15                      [1, 128, 98]              196,736
│    │    └─Conv1d: 3-16                      [1, 1536, 98]             198,144
│    └─BatchNorm1d: 2-7                       [1, 3072]                 6,144
│    └─Linear: 2-8                            [1, 192]                  590,016
│    └─BatchNorm1d: 2-9                       [1, 192]                  384
├─SpeakerIdentification: 1-2                  [1, 9726]                 1,867,392
===============================================================================================
Total params: 8,012,992
Trainable params: 8,012,992
Non-trainable params: 0
Total mult-adds (M): 468.81
===============================================================================================
Input size (MB): 0.03
Forward/backward pass size (MB): 10.36
Params size (MB): 32.05
Estimated Total Size (MB): 42.44
===============================================================================================
[2023-08-05 09:52:08.084231 INFO   ] trainer:train:388 - 训练数据:874175
[2023-08-05 09:52:09.186542 INFO   ] trainer:__train_epoch:334 - Train epoch: [1/30], batch: [0/13659], loss: 11.95824, accuracy: 0.00000, learning rate: 0.00100000, speed: 58.09 data/sec, eta: 5 days, 5:24:08
[2023-08-05 09:52:22.477905 INFO   ] trainer:__train_epoch:334 - Train epoch: [1/30], batch: [100/13659], loss: 10.35675, accuracy: 0.00278, learning rate: 0.00100000, speed: 481.65 data/sec, eta: 15:07:15
[2023-08-05 09:52:35.948581 INFO   ] trainer:__train_epoch:334 - Train epoch: [1/30], batch: [200/13659], loss: 10.22089, accuracy: 0.00505, learning rate: 0.00100000, speed: 475.27 data/sec, eta: 15:19:12
[2023-08-05 09:52:49.249098 INFO   ] trainer:__train_epoch:334 - Train epoch: [1/30], batch: [300/13659], loss: 10.00268, accuracy: 0.00706, learning rate: 0.00100000, speed: 481.45 data/sec, eta: 15:07:11
[2023-08-05 09:53:03.716015 INFO   ] trainer:__train_epoch:334 - Train epoch: [1/30], batch: [400/13659], loss: 9.76052, accuracy: 0.00830, learning rate: 0.00100000, speed: 442.74 data/sec, eta: 16:26:16
[2023-08-05 09:53:18.258807 INFO   ] trainer:__train_epoch:334 - Train epoch: [1/30], batch: [500/13659], loss: 9.50189, accuracy: 0.01060, learning rate: 0.00100000, speed: 440.46 data/sec, eta: 16:31:08
[2023-08-05 09:53:31.618354 INFO   ] trainer:__train_epoch:334 - Train epoch: [1/30], batch: [600/13659], loss: 9.26083, accuracy: 0.01256, learning rate: 0.00100000, speed: 479.50 data/sec, eta: 15:10:12
[2023-08-05 09:53:45.439642 INFO   ] trainer:__train_epoch:334 - Train epoch: [1/30], batch: [700/13659], loss: 9.03548, accuracy: 0.01449, learning rate: 0.00099999, speed: 463.63 data/sec, eta: 15:41:08

VisualDL页面:
VisualDL页面

评估模型

训练结束之后会保存预测模型,我们用预测模型来预测测试集中的音频特征,然后使用音频特征进行两两对比,计算EER和MinDCF。

python eval.py

输出类似如下:

······
------------------------------------------------
W0425 08:27:32.057426 17654 device_context.cc:447] Please NOTE: device: 0, GPU Compute Capability: 7.5, Driver API Version: 11.6, Runtime API Version: 10.2
W0425 08:27:32.065165 17654 device_context.cc:465] device: 0, cuDNN Version: 7.6.
[2023-03-16 20:20:47.195908 INFO   ] trainer:evaluate:341 - 成功加载模型:models/EcapaTdnn_Fbank/best_model/model.pth
100%|███████████████████████████| 84/84 [00:28<00:00,  2.95it/s]
开始两两对比音频特征...
100%|███████████████████████████| 5332/5332 [00:05<00:00, 1027.83it/s]
评估消耗时间:65s,threshold:0.26,EER: 0.14739, MinDCF: 0.41999

声纹对比

下面开始实现声纹对比,创建infer_contrast.py程序,编写infer()函数,在编写模型的时候,模型是有两个输出的,第一个是模型的分类输出,第二个是音频特征输出。所以在这里要输出的是音频的特征值,有了音频的特征值就可以做声纹识别了。我们输入两个语音,通过预测函数获取他们的特征数据,使用这个特征数据可以求他们的对角余弦值,得到的结果可以作为他们相识度。对于这个相识度的阈值threshold,读者可以根据自己项目的准确度要求进行修改。

python infer_contrast.py --audio_path1=audio/a_1.wav --audio_path2=audio/b_2.wav

输出类似如下:

[2023-04-02 18:30:48.009149 INFO   ] utils:print_arguments:13 - ----------- 额外配置参数 -----------
[2023-04-02 18:30:48.009149 INFO   ] utils:print_arguments:15 - audio_path1: dataset/a_1.wav
[2023-04-02 18:30:48.009149 INFO   ] utils:print_arguments:15 - audio_path2: dataset/b_2.wav
[2023-04-02 18:30:48.009149 INFO   ] utils:print_arguments:15 - configs: configs/ecapa_tdnn.yml
[2023-04-02 18:30:48.009149 INFO   ] utils:print_arguments:15 - model_path: models/EcapaTdnn_Fbank/best_model/
[2023-04-02 18:30:48.009149 INFO   ] utils:print_arguments:15 - threshold: 0.6
[2023-04-02 18:30:48.009149 INFO   ] utils:print_arguments:15 - use_gpu: True
[2023-04-02 18:30:48.009149 INFO   ] utils:print_arguments:16 - ------------------------------------------------
······································································
W0425 08:29:10.006249 21121 device_context.cc:447] Please NOTE: device: 0, GPU Compute Capability: 7.5, Driver API Version: 11.6, Runtime API Version: 10.2
W0425 08:29:10.008555 21121 device_context.cc:465] device: 0, cuDNN Version: 7.6.
成功加载模型参数和优化方法参数:models/EcapaTdnn_Fbank/best_model/model.pth
audio/a_1.wav 和 audio/b_2.wav 不是同一个人,相似度为:-0.09565544128417969

声纹识别

在上面的声纹对比的基础上,我们创建infer_recognition.py实现声纹识别。同样是使用上面声纹对比的infer()预测函数,通过这两个同样获取语音的特征数据。 不同的是笔者增加了load_audio_db()register(),以及recognition(),第一个函数是加载声纹库中的语音数据,这些音频就是相当于已经注册的用户,他们注册的语音数据会存放在这里,如果有用户需要通过声纹登录,就需要拿到用户的语音和语音库中的语音进行声纹对比,如果对比成功,那就相当于登录成功并且获取用户注册时的信息数据。第二个函数register()其实就是把录音保存在声纹库中,同时获取该音频的特征添加到待对比的数据特征中。最后recognition()函数中,这个函数就是将输入的语音和语音库中的语音一一对比。
有了上面的声纹识别的函数,读者可以根据自己项目的需求完成声纹识别的方式,例如笔者下面提供的是通过录音来完成声纹识别。首先必须要加载语音库中的语音,语音库文件夹为audio_db,然后用户回车后录音3秒钟,然后程序会自动录音,并使用录音到的音频进行声纹识别,去匹配语音库中的语音,获取用户的信息。通过这样方式,读者也可以修改成通过服务请求的方式完成声纹识别,例如提供一个API供APP调用,用户在APP上通过声纹登录时,把录音到的语音发送到后端完成声纹识别,再把结果返回给APP,前提是用户已经使用语音注册,并成功把语音数据存放在audio_db文件夹中。

python infer_recognition.py

输出类似如下:

[2023-04-02 18:31:20.521040 INFO   ] utils:print_arguments:13 - ----------- 额外配置参数 -----------
[2023-04-02 18:31:20.521040 INFO   ] utils:print_arguments:15 - audio_db_path: audio_db/
[2023-04-02 18:31:20.521040 INFO   ] utils:print_arguments:15 - configs: configs/ecapa_tdnn.yml
[2023-04-02 18:31:20.521040 INFO   ] utils:print_arguments:15 - model_path: models/EcapaTdnn_Fbank/best_model/
[2023-04-02 18:31:20.521040 INFO   ] utils:print_arguments:15 - record_seconds: 3
[2023-04-02 18:31:20.521040 INFO   ] utils:print_arguments:15 - threshold: 0.6
[2023-04-02 18:31:20.521040 INFO   ] utils:print_arguments:15 - use_gpu: True
[2023-04-02 18:31:20.521040 INFO   ] utils:print_arguments:16 - ------------------------------------------------
······································································
W0425 08:30:13.257884 23889 device_context.cc:447] Please NOTE: device: 0, GPU Compute Capability: 7.5, Driver API Version: 11.6, Runtime API Version: 10.2
W0425 08:30:13.260191 23889 device_context.cc:465] device: 0, cuDNN Version: 7.6.
成功加载模型参数和优化方法参数:models/ecapa_tdnn/model.pth
Loaded 沙瑞金 audio.
Loaded 李达康 audio.
请选择功能,0为注册音频到声纹库,1为执行声纹识别:0
按下回车键开机录音,录音3秒中:
开始录音......
录音已结束!
请输入该音频用户的名称:夜雨飘零
请选择功能,0为注册音频到声纹库,1为执行声纹识别:1
按下回车键开机录音,录音3秒中:
开始录音......
录音已结束!
识别说话的为:夜雨飘零,相似度为:0.920434

其他版本

  • Tensorflow:VoiceprintRecognition-Tensorflow
  • PaddlePaddle:VoiceprintRecognition-PaddlePaddle
  • Keras:VoiceprintRecognition-Keras

参考资料

  1. https://github.com/PaddlePaddle/PaddleSpeech
  2. https://github.com/yeyupiaoling/PaddlePaddle-MobileFaceNets
  3. https://github.com/yeyupiaoling/PPASR
  4. https://github.com/alibaba-damo-academy/3D-Speaker

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/905039.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

TCP协议报文结构

TCP是什么 TCP&#xff08;传输控制协议&#xff09;是一种面向连接的、可靠的、全双工的传输协议。它使用头部&#xff08;Header&#xff09;和数据&#xff08;Data&#xff09;来组织数据包&#xff0c;确保数据的可靠传输和按序传递。 TCP协议报文结构 下面详细阐述TCP…

SSH远程直连--------------Docker容器

文章目录 1. 下载docker镜像2. 安装ssh服务3. 本地局域网测试4. 安装cpolar5. 配置公网访问地址6. SSH公网远程连接测试7.固定连接公网地址8. SSH固定地址连接测试 在某些特殊需求下,我们想ssh直接远程连接docker 容器,下面我们介绍结合cpolar工具实现ssh远程直接连接docker容器…

excel 动态表头与合并列

零、希望Springboot-java导出excel文件&#xff0c;包括动态表头与下边合并的列 使用 org.apache.poi 与自己封装工具类实现相关功能。代码如下 一、代码 1、依赖 implementation(group: org.apache.poi,name: poi-ooxml,version: 4.1.0)implementation(group: org.apache.po…

【Docker】存储卷Volume

Docker Volume概念 什么是存储卷 存储卷就是将宿主机的本地文件系统中存在的某个目录直接与容器内部的文件系统上的某一目录建立绑定关系。这就意味着&#xff0c;当我们在容器中的这个目录下写入数据时&#xff0c;容器会将其内容直接写入到宿主机上与此容器建立了绑定关系的…

1139. 最大的以 1 为边界的正方形;2087. 网格图中机器人回家的最小代价;1145. 二叉树着色游戏

1139. 最大的以 1 为边界的正方形 核心思想&#xff1a;枚举正方向的右下角坐标&#xff08;i&#xff0c;j&#xff09;&#xff0c;然后你只需要判断四条边的连续一的最小个数即可&#xff0c;这里是边求连续一的个数同时求解结果。 087. 网格图中机器人回家的最小代价 核心…

PHP自己的框架实现操作成功失败跳转(完善篇四)

1、实现效果&#xff0c;操作成功后失败成功自动跳转 2、创建操作成功失败跳转方法CrlBase.php /**成功后跳转*跳转地址$url* 跳转显示信息$msg* 等待时间$wait* 是否自动跳转$jump*/protected function ok($urlNULL,$msg操作成功,$wait3,$jump1){$code1;include KJ_CORE./tp…

FPGA原理与结构——可配置逻辑块CLB(Configurable Logic Block)

一、什么是CLB 1、CLB简介 可配置逻辑块CLB&#xff08;Configurable Logic Block&#xff09;是xilinx系类FPGA的基本逻辑单元&#xff08;在各系列中CLB可能有所不同&#xff0c;以下我们主要讨论Xilinx 7系类&#xff09;&#xff0c;是实现时序逻辑电路和组合逻辑电…

基于Pytorch构建DenseNet网络对cifar-10进行分类

DenseNet是指Densely connected convolutional networks&#xff08;密集卷积网络&#xff09;。它的优点主要包括有效缓解梯度消失、特征传递更加有效、计算量更小、参数量更小、性能比ResNet更好。它的缺点主要是较大的内存占用。 DenseNet网络与Resnet、GoogleNet类似&#…

如何下载英伟达NVIDIA旧版本驱动,旧版本驱动官方网址

https://www.nvidia.cn/Download/Find.aspx?langcn 也可以直接搜索英伟达官网&#xff0c;点击驱动程序&#xff0c;然后点击试用版驱动程序&#xff0c;里面不但有试用版的驱动&#xff0c;还有之前发布的所有驱动

redis乐观锁+启用事务解决超卖

乐观锁用于监视库存&#xff08;watch&#xff09;&#xff0c;然后接下来就启用事务。 启用事务&#xff0c;将减库存、下单这两个步骤&#xff0c;放到一个事务当中即可解决秒杀问题、防止超卖。 但是&#xff01;&#xff01;&#xff01;乐观锁&#xff0c;会带来" …

Docker 使用归纳总结

mongodb 的 terminal 可执行的命令是基于这个文件夹

【LeetCode】剑指 Offer Ⅱ 第4章:链表(9道题) -- Java Version

题库链接&#xff1a;https://leetcode.cn/problem-list/e8X3pBZi/ 类型题目解决方案双指针剑指 Offer II 021. 删除链表的倒数第 N 个结点双指针 哨兵 ⭐剑指 Offer II 022. 链表中环的入口节点&#xff08;环形链表&#xff09;双指针&#xff1a;二次相遇 ⭐剑指 Offer I…

5.7.webrtc线程的启动与运行

那在上一节课中呢&#xff1f;我向你介绍了web rtc的三大线程&#xff0c;包括了信令线程&#xff0c;工作线程以及网络线程。那同时呢&#xff0c;我们知道了web rtc 3大线程创建的位置以及运行的时机。 对吧&#xff0c;那么今天呢&#xff1f;我们再继续深入了解一下&#…

SSM框架的学习与应用(Spring + Spring MVC + MyBatis)-Java EE企业级应用开发学习记录(第一天)Mybatis的学习

SSM框架的学习与应用(Spring Spring MVC MyBatis)-Java EE企业级应用开发学习记录&#xff08;第一天&#xff09;Mybatis的学习 一、当前的主流框架介绍(这就是后期我会发出来的框架学习) Spring框架 ​ Spring是一个开源框架&#xff0c;是为了解决企业应用程序开发复杂…

【2023最新爬虫】用python爬取知乎任意问题下的全部回答

老规矩&#xff0c;先上结果&#xff1a; 爬取了前200多页&#xff0c;每页5条数据&#xff0c;共1000多条回答。&#xff08;程序设置的自动判断结束页&#xff0c;我是手动break的&#xff09; 共爬到13个字段&#xff0c;包含&#xff1a; 问题id,页码,答主昵称,答主性别,…

Baumer工业相机堡盟工业相机如何通过BGAPISDK设置相机的Bufferlist序列(C#)

Baumer工业相机堡盟工业相机如何通过BGAPISDK设置相机的Bufferlist序列&#xff08;C#&#xff09; Baumer工业相机Baumer工业相机的Bufferlist序列功能的技术背景CameraExplorer如何查看相机Bufferlist功能在BGAPI SDK里通过函数设置相机固定帧率 Baumer工业相机通过BGAPI SDK…

文件同步工具rsync

文章目录 作用特性安装命令服务端启动增加安全认证及免密登录 实时推送源服务器配置结合inotify实现实时推送 参数详解 学些过程中遇到的问题 作用 rsync是linux系统下的数据镜像备份工具。使用快速增量备份工具Remote Sync可以远程同步&#xff0c;支持本地复制&#xff0c;或…

05有监督学习——神经网络

线性模型 给定n维输入&#xff1a; x [ x 1 , x 1 , … , x n ] T x {[{x_1},{x_1}, \ldots ,{x_n}]^T} x[x1​,x1​,…,xn​]T 线性模型有一个n维权重和一个标量偏差: w [ w 1 , w 1 , … , w n ] T , b w {[{w_1},{w_1}, \ldots ,{w_n}]^T},b w[w1​,w1​,…,wn​]T,b 输…

Elasticsearch 处理地理信息

1、GeoHash ​ GeoHash是一种地理坐标编码系统&#xff0c;可以将地理位置按照一定的规则转换为字符串&#xff0c;以方便对地理位置信息建立空间索引。首先要明确的是&#xff0c;GeoHash代表的不是一个点而是一个区域。GeoHash具有两个显著的特点&#xff1a;一是通过改变 G…

7-6 统计字符出现次数

分数 20 全屏浏览题目 切换布局 作者 C课程组 单位 浙江大学 本题要求编写程序&#xff0c;统计并输出某给定字符在给定字符串中出现的次数。 输入格式&#xff1a; 输入第一行给出一个以回车结束的字符串&#xff08;少于80个字符&#xff09;&#xff1b;第二行输入一个…