排序算法:选择排序

news2024/11/23 21:14:19

选择排序的思想是:双重循环遍历数组,每经过一轮比较,找到最小元素的下标,将其交换至首位。

public static void selectionSort(int[] arr) {
    int minIndex;
    for (int i = 0; i < arr.length - 1; i++) {
        minIndex = i;
        for (int j = i + 1; j < arr.length; j++) {
            if (arr[minIndex] > arr[j]) {
                // 记录最小值的下标
                minIndex = j;
            }
        }
        // 将最小元素交换至首位
        int temp = arr[i];
        arr[i] = arr[minIndex];
        arr[minIndex] = temp;
    }
}

        选择排序就好比第一个数字站在擂台上,大吼一声:“还有谁比我小?”。剩余数字来挨个打擂,如果出现比第一个数字小的数,则新的擂主产生。每轮打擂结束都会找出一个最小的数,将其交换至首位。经过 n-1 轮打擂,所有的数字就按照从小到大排序完成了。

        现在让我们思考一下,冒泡排序和选择排序有什么异同?

相同点:

  • 都是两层循环,时间复杂度都为  O(n²);
  • 都只使用有限个变量,空间复杂度  O(1);

不同点:

  • 冒泡排序在比较过程中就不断交换;而选择排序增加了一个变量保存最小值 / 最大值的下标,遍历完成后才交换,减少了交换次数。

事实上,冒泡排序和选择排序还有一个非常重要的不同点,那就是:

  • 冒泡排序法是稳定的,选择排序法是不稳定的。

想要理解这点不同,我们先要知道什么是排序算法的稳定性。

排序算法的稳定性

假定在待排序的记录序列中,存在多个具有相同的关键字的记录,若经过排序,这些记录的相对次序保持不变,即在原序列中,r[i] = r[j],且 r[i] 在 r[j] 之前,而在排序后的序列中,r[i] 仍在 r[j] 之前,则称这种排序算法是稳定的;否则称为不稳定的。

        理解了稳定性的定义后,我们就能分析出:冒泡排序中,只有左边的数字大于右边的数字时才会发生交换,相等的数字之间不会发生交换,所以它是稳定的。

        而选择排序中,最小值和首位交换的过程可能会破坏稳定性。比如数列:[2, 2, 1],在选择排序中第一次进行交换时,原数列中的两个 2 的相对顺序就被改变了,因此,我们说选择排序是不稳定的。

        那么排序算法的稳定性有什么意义呢?其实它只在一种情况下有意义:当要排序的内容是一个对象的多个属性,且其原本的顺序存在意义时,如果我们需要在二次排序后保持原有排序的意义,就需要使用到稳定性的算法。

        举个例子,如果我们要对一组商品排序,商品存在两个属性:价格和销量。当我们按照价格从高到低排序后,要再按照销量对其排序,这时,如果要保证销量相同的商品仍保持价格从高到低的顺序,就必须使用稳定性算法。

        当然,算法的稳定性与具体的实现有关。在修改比较的条件后,稳定性排序算法可能会变成不稳定的。如冒泡算法中,如果将「左边的数大于右边的数,则交换」这个条件修改为「左边的数大于或等于右边的数,则交换」,冒泡算法就变得不稳定了。

        同样地,不稳定排序算法也可以经过修改,达到稳定的效果。思考一下,选择排序算法如何实现稳定排序呢?

        实现的方式有很多种,这里给出一种最简单的思路:新开一个数组,将每轮找出的最小值依次添加到新数组中,选择排序算法就变成稳定的了。

        但如果将寻找最小值的比较条件由arr[minIndex] > arr[j]修改为arr[minIndex] >= arr[j],即使新开一个数组,选择排序算法依旧是不稳定的。所以分析算法的稳定性时,需要结合具体的实现逻辑才能得出结论,我们通常所说的算法稳定性是基于一般实现而言的。

二元选择排序

        选择排序算法也是可以优化的,既然每轮遍历时找出了最小值,何不把最大值也顺便找出来呢?这就是二元选择排序的思想。

        使用二元选择排序,每轮选择时记录最小值和最大值,可以把数组需要遍历的范围缩小一倍。

public static void selectionSort2(int[] arr) {
    int minIndex, maxIndex;
    // i 只需要遍历一半
    for (int i = 0; i < arr.length / 2; i++) {
        minIndex = i;
        maxIndex = i;
        for (int j = i + 1; j < arr.length - i; j++) {
            if (arr[minIndex] > arr[j]) {
                // 记录最小值的下标
                minIndex = j;
            }
            if (arr[maxIndex] < arr[j]) {
                // 记录最大值的下标
                maxIndex = j;
            }
        }
        // 如果 minIndex 和 maxIndex 都相等,那么他们必定都等于 i,且后面的所有数字都与 arr[i] 相等,此时已经排序完成
        if (minIndex == maxIndex) break;
        // 将最小元素交换至首位
        int temp = arr[i];
        arr[i] = arr[minIndex];
        arr[minIndex] = temp;
        // 如果最大值的下标刚好是 i,由于 arr[i] 和 arr[minIndex] 已经交换了,所以这里要更新 maxIndex 的值。
        if (maxIndex == i) maxIndex = minIndex;
        // 将最大元素交换至末尾
        int lastIndex = arr.length - 1 - i;
        temp = arr[lastIndex];
        arr[lastIndex] = arr[maxIndex];
        arr[maxIndex] = temp;
    }
}

        我们使用 minIndex 记录最小值的下标,maxIndex 记录最大值的下标。每次遍历后,将最小值交换到首位,最大值交换到末尾,就完成了排序。

        由于每一轮遍历可以排好两个数字,所以最外层的遍历只需遍历一半即可。

        二元选择排序中有一句很重要的代码,它位于交换最小值和交换最大值的代码中间:

if (maxIndex == i) maxIndex = minIndex;

        这行代码的作用处理了一种特殊情况:如果最大值的下标等于 i,也就是说 arr[i] 就是最大值,由于 arr[i] 是当前遍历轮次的首位,它已经和 arr[minIndex] 交换了,所以最大值的下标需要跟踪到 arr[i] 最新的下标 minIndex。

二元选择排序的效率

        在二元选择排序算法中,数组需要遍历的范围缩小了一倍。那么这样可以使选择排序的效率提升一倍吗?

        从代码可以看出,虽然二元选择排序最外层的遍历范围缩小了,但 for 循环内做的事情翻了一倍。也就是说二元选择排序无法将选择排序的效率提升一倍。但实测会发现二元选择排序的速度确实比选择排序的速度快一点点,它的速度提升主要是因为两点:

  • 在选择排序的外层 for 循环中,i 需要加到 arr.length - 1 ,二元选择排序中 i 只需要加到 arr.length / 2;
  • 在选择排序的内层 for 循环中,j 需要加到 arr.length ,二元选择排序中 j 只需要加到 arr.length - i;

我们不妨发扬一下极客精神,一起来做一个统计实验:

public class TestSelectionSort {
    public static void selectionSort(int[] arr) {
        int countI = 0;
        int countJ = 0;
        int countArr = 0;
        int minIndex;
        countI++;
        for (int i = 0; i < arr.length - 1; i++, countI++) {
            minIndex = i;
            countJ++;
            for (int j = i + 1; j < arr.length; j++, countJ++) {
                if (arr[minIndex] > arr[j]) {
                    // 记录最小值的下标
                    minIndex = j;
                }
                countArr++;
            }
            // 将最小元素交换至首位
            int temp = arr[i];
            arr[i] = arr[minIndex];
            arr[minIndex] = temp;
        }
        int count = countI + countJ + countArr;
        System.out.println("selectionSort: countI = " + countI + ", countJ = " + countJ + ", countArr = " + countArr + ", count = " + count);
    }

    public static void selectionSort2(int[] arr) {
        int countI = 0;
        int countJ = 0;
        int countArr = 0;
        int minIndex, maxIndex;
        countI++;
        // i 只需要遍历一半
        for (int i = 0; i < arr.length / 2; i++, countI++) {
            minIndex = i;
            maxIndex = i;
            countJ++;
            for (int j = i + 1; j < arr.length - i; j++, countJ++) {
                if (arr[minIndex] > arr[j]) {
                    // 记录最小值的下标
                    minIndex = j;
                }
                if (arr[maxIndex] < arr[j]) {
                    // 记录最大值的下标
                    maxIndex = j;
                }
                countArr += 2;
            }
            // 如果 minIndex 和 maxIndex 都相等,那么他们必定都等于 i,且后面的所有数字都与 arr[i] 相等,此时已经排序完成
            if (minIndex == maxIndex) break;
            // 将最小元素交换至首位
            int temp = arr[i];
            arr[i] = arr[minIndex];
            arr[minIndex] = temp;
            // 如果最大值的下标刚好是 i,由于 arr[i] 和 arr[minIndex] 已经交换了,所以这里要更新 maxIndex 的值。
            if (maxIndex == i) maxIndex = minIndex;
            // 将最大元素交换至末尾
            int lastIndex = arr.length - 1 - i;
            temp = arr[lastIndex];
            arr[lastIndex] = arr[maxIndex];
            arr[maxIndex] = temp;
        }
        int count = countI + countJ + countArr;
        System.out.println("selectionSort2: countI = " + countI + ", countJ = " + countJ + ", countArr = " + countArr + ", count = " + count);
    }
}

        在这个类中,我们用 countI 记录 i 的比较次数,countJ 记录 j 的比较次数,countArr 记录 arr 的比较次数,count 记录总比较次数。

测试用例:

import org.junit.Test;

import java.util.ArrayList;

public class UnitTest {
    @Test
    public void test() {
        ArrayList<Integer> list = new ArrayList<>();
        for (int i = 0; i <= 1000; i++) {
            // ArrayList 转 int[]
            int[] arr = list.stream().mapToInt(Integer::intValue).toArray();
            System.out.println("*** arr.length = " + arr.length + " ***");
            TestSelectionSort.selectionSort(arr);
            TestSelectionSort.selectionSort2(arr);
            list.add(i);
        }
    }
}

这里列出部分测试结果:

        可以看到,二元选择排序中, arr 数组的比较次数甚至略高于选择排序的比较次数,整体是相差无几的。只是 i 和 j 的比较次数较少,正是在这两个地方提高了效率。

        并且,在二元选择排序中,我们可以做一个剪枝优化,当 minIndex == maxIndex 时,说明后续所有的元素都相等,就好比班上最高的学生和最矮的学生一样高,说明整个班上的人身高都相同了。此时已经排序完成,可以提前跳出循环。通过这个剪枝优化,对于相同元素较多的数组,二元选择排序的效率将远远超过选择排序。

和选择排序一样,二元选择排序也是不稳定的。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/904969.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

python rtsp 硬件解码 二

上次使用了python的opencv模块 述说了使用PyNvCodec 模块&#xff0c;这个模块本身并没有rtsp的读写&#xff0c;那么读写rtsp是可以使用很多方法的&#xff0c;我们为了输出到pytorch直接使用AI程序&#xff0c;简化rtsp 输入&#xff0c;可以直接使用ffmpeg的子进程 方法一 …

申请部署阿里云SSL免费证书

使用宝塔自动创建的证书有时候会报NET::ERR_CERT_COMMON_NAME_INVALID&#xff0c;并且每次只能三个月&#xff0c;需要点击续期非常麻烦&#xff0c;容易遗忘。 阿里云免费SSL证书 前往阿里云管理控制台【数字证书管理服务】【SSL证书】&#xff0c;每年20个额度&#xff0c;一…

FPGA原理与结构——时钟资源

一、时钟概述 1、时钟 时钟&#xff0c;即clock信号&#xff0c;是由晶体经过激发产生的振荡电路。模拟端通过各种技术&#xff08;PLL,DPLL&#xff09;产生规律、周期性变化的信号给数字端&#xff0c;数字端使用该信号的边沿进行过赋值&#xff08;procedural assignment&a…

在vue3中创建多重布局的方法

在vue3中创建多重布局的方法 在本文中&#xff0c;会通过demo演示来讲解几个用于创建多重布局的方式。 demo需求&#xff1a;创建一个带有主页、营销页面和应用程序页面的 Web 应用程序 1. 导入Layouts作为常规组件来创建布局系 这是创建布局最简单的方法&#xff0c;但灵活…

ROS-2.ros工具简单认识

ROS命令工具 ros提供了丰富的命令行工具 命令作用rostopic主题相关工具rosservicerosnode节点相关工具rosparam参数相关工具rosmsg消息相关工具rossrv$1 运行小海龟 开启一个终端&#xff0c;启动ros master roscore开启一个终端&#xff0c;启动小海龟仿真器 rosrun tur…

图床项目进度(一)——UI首页

1. 前言 前面我不是说了要做一个图床吗&#xff0c;现在在做ui。 我vue水平不够高&#xff0c;大部分参考b站项目照猫画虎。 vue实战后台 我使用ts&#xff0c;vite&#xff0c;vue3进行了重构。 当然&#xff0c;我对这些理解并不深刻&#xff0c;许多代码都是游离于表面&am…

k8s之Pod及Probe 探针机制(健康检查机制)

文章目录 1、Pod1.1、定义1.2、Pod的形式1.2、Pod的使用1.3、 Pod生命周期1.4、生命周期钩子1.5、临时容器1.5.1、定义1.5.2、使用临时容器的步骤 1.6、静态Pod 2、Probe 探针机制&#xff08;健康检查机制&#xff09;2.1、探针分类2.2、Probe配置项2.3、编写yaml测试探针机制…

初阶c语言:实战项目三子棋

前言 大家已经和博主学习有一段时间了&#xff0c;今天讲一个有趣的实战项目——三子棋 目录 前言 制作菜单 构建游戏选择框架 实现游戏功能 模块化编程 初始化棋盘 打印棋盘 玩家下棋 电脑下棋 时间戳&#xff1a;推荐一篇 C语言生成随机数的方法_c语言随机数_杯浅…

成为创作者的第512天——创作纪念日

​ &#x1f4da;文章目录 &#x1f4e8;官方致信 &#x1f3af;我的第一篇文章 &#x1f9e9;机缘 &#x1f9e9;收获 &#x1f9e9;成就 &#x1f9e9;憧憬与目标 &#x1f4e8;官方致信 ​ &#x1f3af;我的第一篇文章 2022 年 03 月 26 日&#xff0c;那一天我在C…

【网络安全】防火墙知识点全面图解(一)

防火墙知识点全面图解&#xff08;一&#xff09; 1、什么是防火墙&#xff1f; 防火墙&#xff08;Firewall&#xff09;是防止火灾发生时&#xff0c;火势烧到其它区域&#xff0c;使用由防火材料砌的墙。 后来这个词语引入到了网络中&#xff0c;把从外向内的网络入侵行为看…

nodejs使用PassThrough流进行数据传递合并

在Node.js中&#xff0c;流&#xff08;stream&#xff09;是处理数据的强大工具&#xff0c;它们允许我们以流式方式处理大量数据&#xff0c;而不必一次性将所有数据加载到内存中。PassThrough是Node.js中的一个流类型&#xff0c;它在数据流传递过程中起到 无操作 的中间层&…

LeetCode 周赛上分之旅 #41 结合离散化的线性 DP 问题

⭐️ 本文已收录到 AndroidFamily&#xff0c;技术和职场问题&#xff0c;请关注公众号 [彭旭锐] 和 BaguTree Pro 知识星球提问。 学习数据结构与算法的关键在于掌握问题背后的算法思维框架&#xff0c;你的思考越抽象&#xff0c;它能覆盖的问题域就越广&#xff0c;理解难度…

设计模式——里氏替换原则

文章目录 里氏替换原则OO 中的继承性的思考和说明基本介绍一个程序引出的问题和思考解决方法 里氏替换原则 OO 中的继承性的思考和说明 继承包含这样一层含义&#xff1a;父类中凡是已经实现好的方法&#xff0c;实际上是在设定规范和契约&#xff0c;虽然它不强制要求所有的…

Web会话技术

会话:用户打开浏览器&#xff0c;访问web服务器的资源&#xff0c;会话建立&#xff0c;直到有一方断开连接&#xff0c;会话结束。在一次会话中可以包含多次请求和响应 会话跟踪:一种维护浏览器状态的方法&#xff0c;服务器需要识别多次请求是否来自于同一浏览器&#xff0c;…

线性代数的学习和整理6:向量和矩阵详细,什么是矩阵?(草稿-----未完成)

43 矩阵 4.1 矩阵 4 整理网上总结一些 关于直击线性代数本质的 观点 矩阵的本质是旋转和缩放 矩阵里的数字0矩阵里的数字1&#xff0c;表示不进行缩放矩阵里的数字2等&#xff0c;表示缩放矩阵里的数字-3 表示缩放-3倍&#xff0c;并且反向矩阵里的数字的位置矩阵拆分为列向量…

学C的第三十四天【程序环境和预处理】

相关代码gitee自取&#xff1a; C语言学习日记: 加油努力 (gitee.com) 接上期&#xff1a; 学C的第三十三天【C语言文件操作】_高高的胖子的博客-CSDN博客 1 . 程序的翻译环境和执行环境 在ANSI C(C语言标准)的任何一种实现中&#xff0c;存在两个不同的环境。 &#xff0…

Baumer工业相机堡盟工业相机如何通过BGAPISDK设置相机的Bufferlist序列(C++)

Baumer工业相机堡盟工业相机如何通过BGAPISDK设置相机的Bufferlist序列&#xff08;C&#xff09; Baumer工业相机Baumer工业相机的Bufferlist序列功能的技术背景CameraExplorer如何查看相机Bufferlist功能在BGAPI SDK里通过函数设置相机Bufferlist参数 Baumer工业相机通过BGAP…

第9步---MySQL的索引和存储引擎

第9步---MySQL的索引和存储引擎 1.索引 1.1分类 索引可以快速的找出具有特定值的行。不用从头开始进行寻找了。 类别 hash和btree hash 根据字段值生生成一个hash的值 快速的进行定位到对应的行的值 可能会出现相同的值&#xff0c;找到对应的空间会出现对应的值 btree树…

深度学习|自监督学习、MAE学习策略、消融实验

前言&#xff1a;最近在阅读论文&#xff0c;发现太多机器学习的知识不懂&#xff0c;把最近看的一篇论文有关的知识点汇总了一下。 自监督学习、MAE学习策略、消融实验 自监督学习MAE学习策略消融实验 自监督学习 Pretrain-Finetune&#xff08;预训练精调&#xff09;模式&…

从LeakCanary看如何判断对象被回收

前面已经了解了Service&#xff0c;Fragment&#xff0c;ViewModel对象的销毁时机&#xff0c;那么在触发销毁时机后&#xff0c;我们怎么判断这些对象有没有回收呢&#xff1f; 大家都知道在Java中有强引用&#xff0c;弱引用&#xff0c;软引用&#xff0c;虚引用四种引用方…