RT-Thread 的环形缓冲区 ---- 镜像指示位

news2024/11/26 5:24:19

可以看一下这篇我写的博客,了解一下大概: 

RingBuffer 环形缓冲区----镜像指示位_呵呵哒( ̄▽ ̄)"的博客-CSDN博客https://blog.csdn.net/weixin_41987016/article/details/132340883?spm=1001.2014.3001.5501

【回顾】缓冲区变满在环形缓冲区(ring buffer)中会实际发生,一般会有两种处理策略:

        🐞① 覆盖老数据

        🐞② 抛出“异常”

镜像指示位:缓冲区的长度如果是n,逻辑地址空间则为0至n-1;那么,规定n至2n-1为镜像逻辑地址空间。本策略规定读写指针的地址空间为0至2n-1,其中低半部分对应于常规的逻辑地址空间,高半部分对应于镜像逻辑地址空间。当指针值大于等于2n时,使其折返(wrapped)到ptr-2n。使用一位表示写指针或读指针是否进入了虚拟的镜像存储区:置位表示进入,不置位表示没进入还在基本存储区。

        在读写指针的值相同情况下,如果二者的指示位相同,说明缓冲区为空;如果二者的指示位不同,说明缓冲区为满。这种方法优点是测试缓冲区满/空很简单;不需要做取余数操作;读写线程可以分别设计专用算法策略,能实现精致的并发控制。缺点是读写指针各需要额外的一位作为指示位。

        如果缓冲区长度是2的幂,则本方法可以省略镜像指示位。如果读写指针的值相等,则缓冲区为空;如果读写指针相差n,则缓冲区为满,这可以用条件表达式(写指针==(读指针异或缓冲区长度))来判断。

----(来自百度百科)

一、基本步骤

1.数据结构

typedef struct ringbuffer
{
    uint8 *buffer_ptr;
    uint16 read_mirror : 1;
    uint16 read_index : 15;
    uint16 write_mirror : 1;
    uint16 write_index : 15;
    /* as we use msb of index as mirror bit, the size should be signed and
     * could only be positive. */
    uint16 size;
}ringbuff;

 2.缓冲区初始化

// 缓冲区初始化 
void rb_init(ringbuff *rb,uint8 *pool,uint16 size){
    /* initialize read and write index */
    rb->read_mirror = rb->read_index = 0;
    rb->write_mirror = rb->write_index = 0;

    /* set buffer pool and size */
    rb->buffer_ptr = pool;
    rb->size = DATA_ALIGN_DOWN(size, DATA_ALIGN_SIZE);
}

 3.创建一个ringbuffer

// 创建一个ringbuff
ringbuff* rb_create(uint16_t size) {
    ringbuff *rb;
    uint8_t *pool;

    size = DATA_ALIGN_DOWN(size, DATA_ALIGN_SIZE);// 大小做字节对齐

    rb = (ringbuff *)malloc(sizeof(ringbuff));// 申请内存
    if (rb == NULL)
        goto exit;

    pool = (uint8_t *)malloc(size);// 申请数据缓冲区内存
    if (pool == NULL) {
        free(rb);
        rb = NULL;
        goto exit;
    }
    rb_init(rb, pool, size);// 初始化 ringbuff

exit:
    return rb;
}

 4.销毁环形缓冲区

// 摧毁 ringbuff
void rb_destroy(ringbuff *rb) {   
    cout<<"销毁ringbuff~"<<endl;    
    free(rb->buffer_ptr);
    free(rb);// 释放申请的内存
}

二、缓冲区中填充指定数据长度的数据

5. 缓冲区中填充指定数据长度的数据

举个例子:(当缓冲区空间小于待写入的数据长度事覆盖缓冲区原有数据)

图1:当环形缓冲区为空时,读索引和写索引指向相同的位置(这里初始化为0);

图2:写操作:想往(rb->buffer_size = 8)缓冲区中写入15个元素:123456789ABCDEF,但写入的数据长度(length)超过缓冲区空闲长度(space_length)了。解决方法:RT-Thread(覆盖老数据策略)就是只截取后8位数据放入缓冲区。

可知length=15,space_length=8,满足length > space_length,让ptr = &ptr[length - rb->buffer_size]

图3:由图2的操作可以得到以上的环形缓冲区的数据内容分布

图4:读操作,读取缓冲区4个元素:89AB,修改读索引

图5:写操作,写入缓冲区4个元素:1234,修改写索引

 图6:读操作,读取缓冲区4个元素:CDEF,修改读索引

🐞① 当缓冲区空间小于待写入的数据长度事覆盖缓冲区原有数据

/* 缓冲区中填充指定数据长度的数据(当缓冲区空间小于待写入的数据长度事覆盖缓冲区原有数据) */
uint16 rb_put_force(ringbuff *rb,const uint8 *ptr,uint16 length);
// 强制往 ringbuff 写入数据
uint16 rb_put_force(ringbuff *rb,const uint8 *ptr,uint16 length) {
    uint16 space_length = 0;

    space_length = rb_space_len(rb);
    // cout<<"ptr: "<<ptr<<endl;
    // cout<<"space_length: "<<space_length<<endl;
    // cout<<"length: "<<length<<endl;
    if (length > space_length) { 
        ptr = &ptr[length - rb->size];
        length = rb->size;
    }
    // cout<<"ptr: "<<ptr<<endl;
    // cout<<"length: "<<length<<endl;

    if (rb->size - rb->write_index > length)
    {
        // cout<<"lailailailai"<<endl;
        /* read_index - write_index = empty space */
        memcpy(&rb->buffer_ptr[rb->write_index], ptr, length);
        /* this should not cause overflow because there is enough space for
         * length of data in current mirror */
        rb->write_index += length;

        if (length > space_length)
            rb->read_index = rb->write_index;

        return length;
    }

    memcpy(&rb->buffer_ptr[rb->write_index],
           &ptr[0],
           rb->size - rb->write_index);

    memcpy(&rb->buffer_ptr[0],
           &ptr[rb->size - rb->write_index],
           length - (rb->size - rb->write_index));

    /* we are going into the other side of the mirror */
    rb->write_mirror = ~rb->write_mirror;
    rb->write_index = length - (rb->size - rb->write_index);

    if (length > space_length)
    {
        rb->read_mirror = ~rb->read_mirror;
        rb->read_index = rb->write_index;
    }

    return length;
}

🐞② 当缓冲区空间小于待写入的数据长度事不覆盖缓冲区原有数据

/* 缓冲区中填充指定数据长度的数据(当缓冲区空间小于待写入的数据长度事不覆盖缓冲区原有数据) */
uint16 rb_put(ringbuff *rb,const uint8 *ptr,uint16 length);
// 往 ringbuff 写入数据
uint16 rb_put(ringbuff *rb,const uint8 *ptr,uint16 length) {
    uint16 size = 0;

    /* whether has enough space */
    size = rb_space_len(rb);// 获取 ring_buff 中可用空间的大小

    /* no space */
    if (size == 0)
        return 0;// 如果空间不够 直接返回

    /* drop some data */
    if (size < length) // 如果缓存区的空间不够保存这一次数据, 则把能够写入的这一部分数据写进去
        length = size;
	/* One-time write */
    if (rb->size - rb->write_index > length)
    {
        /* read_index - write_index = empty space */
        memcpy(&rb->buffer_ptr[rb->write_index], ptr, length);
        /* this should not cause overflow because there is enough space for
         * length of data in current mirror */
        rb->write_index += length;
        return length;// 返回写入数据的长度
    }
	/* two-time write */
    memcpy(&rb->buffer_ptr[rb->write_index],
           &ptr[0],
           rb->size - rb->write_index);
    memcpy(&rb->buffer_ptr[0],
           &ptr[rb->size - rb->write_index],
           length - (rb->size - rb->write_index));

    /* we are going into the other side of the mirror */
    rb->write_mirror = ~rb->write_mirror;
    rb->write_index = length - (rb->size - rb->write_index);

    return length;
}

6. 缓冲区中获取指定长度的数据(返回实际获取数据的长度)

/* 缓冲区中获取指定长度的数据(返回实际获取数据的长度) */
uint16 rb_get(ringbuff *rb,uint8 *ptr,uint16 length);
// 从 ringbuff 获取数据
uint16 rb_get(ringbuff *rb,uint8 *ptr,uint16 length) {
    uint16 size = 0;

    /* The length of the existing data in the buffer */
    size = rb_data_len(rb);

    /* no data */
    if (size == 0)
        return 0;

    /* less data */
    if (size < length)
        length = size;
    
    cout<<"size: "<<size<<" < "<<"length: " << length<<(size < length)<<endl;

    if (rb->size - rb->read_index > length)
    {
        /* copy all of data */
        memcpy(ptr, &rb->buffer_ptr[rb->read_index], length);
        /* this should not cause overflow because there is enough space for
         * length of data in current mirror */
        rb->read_index += length;
        return length;
    }

    memcpy(&ptr[0],
           &rb->buffer_ptr[rb->read_index],
           rb->size - rb->read_index);
    memcpy(&ptr[rb->size - rb->read_index],
           &rb->buffer_ptr[0],
           length - (rb->size - rb->read_index));

    /* we are going into the other side of the mirror */
    rb->read_mirror = ~rb->read_mirror;
    rb->read_index = length - (rb->size - rb->read_index);

    return length;
}

7.测试和打印

void readprint(ringbuff* rb,uint8 buff[]) {
    cout<<"读取数据:";
    int i = 0;
    while(buff[i]!='\0') {
        cout<<buff[i++];
    }
    print(rb);
}

void writeprint(ringbuff* rb){
    for(int i=0;i<rb->size;i++){
        cout<<rb->buffer_ptr[i];
    }
    print(rb);
}

void test01() {
    ringbuff* rb = rb_create(9);

    const uint8 p[] = "123456789ABCDEF";
    uint32_t len = sizeof(p) / sizeof(char);
    
    cout<<"写入数据:"<<p<<endl;
    // rb_put(rb,p,len-1);
    rb_put_force(rb,p,len-1); 
    writeprint(rb);                       // 89ABCDEF

    uint8 saveBuff[20] = "";
    rb_get(rb,saveBuff,4);   // 89AB
    readprint(rb,saveBuff);
    
    const uint8 p1[] = "1234";
    cout<<"写入数据:"<<p1<<endl;
    rb_put_force(rb,p1,4);    // 1234CDEF
    writeprint(rb);

    memset(saveBuff,0,20);
    rb_get(rb,saveBuff,4);   // CDEF
    
    cout<<"读取数据:";
    readprint(rb,saveBuff);

    // 销毁ringbuff
    rb_destroy(rb);
}
写入数据:123456789ABCDEF
89ABCDEF
rb->write_index: 0
rb->read_index: 0
rb->write_mirror: 1
rb->read_mirror: 0
rb_data_len: 8
rb_space_len: 0

size: 8 < length: 40
读取数据:89AB
rb->write_index: 0
rb->read_index: 4
rb->write_mirror: 1
rb->read_mirror: 0
rb_data_len: 4
rb_space_len: 4

写入数据:1234
1234CDEF
rb->write_index: 4
rb->read_index: 4
rb->write_mirror: 1
rb->read_mirror: 0
rb_data_len: 8
rb_space_len: 0

size: 8 < length: 40
读取数据:读取数据:CDEF
rb->write_index: 4
rb->read_index: 0
rb->write_mirror: 1
rb->read_mirror: 1
rb_data_len: 4
rb_space_len: 4

销毁ringbuff~

三、缓冲区中填充一个数据

5. 缓冲区中填充一个数据

举个例子:(当缓冲区空间小于待写入的数据长度事覆盖缓冲区原有数据)

图1:依次存入1、2、3、4、5、6、7、8、A、B、C、D、E、F这些字符,直到缓冲区为满

图2:依次读出单个字符: 8、9、A、B

🐞① 当缓冲区空间小于待写入的数据长度事覆盖缓冲区原有数据

/* 缓冲区中填充一个数据(当缓冲区空间小于待写入的数据长度事覆盖缓冲区原有数据) */
uint16 rb_putchar_force(ringbuff *rb, const uint8 ch);
// 往 ringbuff 强制写入一个字符
uint16 rb_putchar_force(ringbuff *rb, const uint8 ch) {
    enum rb_state old_state = rb_status(rb);// 获取状态
    rb->buffer_ptr[rb->write_index] = ch;// 写入数据
    /* flip mirror */
    if (rb->write_index == rb->size-1) {// 检查当前镜像是不是满了
        rb->write_mirror = ~rb->write_mirror; // 翻转写镜像
        rb->write_index = 0;// 翻转之后设置下标为 0
        if (old_state == RINGBUFFER_FULL) {// 如果 ringbuff 的状态是满
            rb->read_mirror = ~rb->read_mirror; // 翻转读镜像
            rb->read_index = rb->write_index; // 设置读下标和写下标一致
        }
    }else{
        rb->write_index++; // 写下标加1
        if (old_state == RINGBUFFER_FULL)
            rb->read_index = rb->write_index;// 如果满,设置读下标等于写下标
    }
    return 1; // 写入一个字符,返回1
}

🐞② 当缓冲区空间小于待写入的数据长度事不覆盖缓冲区原有数据

/* 缓冲区中填充一个数据(当缓冲区空间小于待写入的数据长度事不覆盖缓冲区原有数据) */
uint16 rb_putchar(ringbuff *rb, const uint8 ch);
// 往 ringbuff 中写入一个字符
uint16 rb_putchar(ringbuff *rb, const uint8 ch) {
    /* whether has enough space */
    if (!rb_space_len(rb)) // 没有足够的空间就直接返回了
        return 0;
    rb->buffer_ptr[rb->write_index] = ch;// 把这个字符写入到缓冲区的指定位置
    /* flip mirror */
    if (rb->write_index == rb->size-1) {// 检查写入这个字符后,当前镜像是否写满
        rb->write_mirror = ~rb->write_mirror;// 翻转镜像
        rb->write_index = 0;// 设置下标为0
    }else{
        rb->write_index++; // 下标加1
    }
    return 1;// 写入一个字符,返回 1
}

6. 缓冲区中获取一个数据(返回实际获取数据的长度)

/* 缓冲区中获取一个数据(返回实际获取数据的长度) */
uint16 rb_getchar(ringbuff *rb, uint8 *ch);
// 从ringbuff 获取一个字符
uint16 rb_getchar(ringbuff *rb,uint8 *ch) {
    /* ringbuffer is empty */
    if (!rb_data_len(rb)) // 检查 ringbuff 是否为空
        return 0;
    /* put character */
    *ch = rb->buffer_ptr[rb->read_index];// 获取当前读下标的数据
    if (rb->read_index == rb->size-1) {// 如果当前镜像满了
        rb->read_mirror = ~rb->read_mirror;// 翻转镜像
        rb->read_index = 0; // 设置读数据的下标为0
    } else {
        rb->read_index++; // 下标加1
    }

    return 1;// 读取一个字节,返回1
}

7.测试和打印

#include "rb.h"
#include "rb.cpp"
void print(ringbuff *rb) {
    cout<<endl;
    cout<<"rb->write_index: "<<rb->write_index<<endl;
    cout<<"rb->read_index: "<<rb->read_index<<endl;
    cout<<"rb->write_mirror: "<<rb->write_mirror<<endl;
    cout<<"rb->read_mirror: "<<rb->read_mirror<<endl;
    cout<<"rb_data_len: "<<rb_data_len(rb)<<endl;
    cout<<"rb_space_len: "<<rb_space_len(rb)<<endl;
    cout<<endl;
}

void writeprint(ringbuff* rb){
    for(int i=0;i<rb->size;i++){
        cout<<rb->buffer_ptr[i];
    }
    print(rb);
}

void test02() {
    ringbuff* rb = rb_create(9);
    cout<<"rb->size: "<<rb->size<<endl;
    const uint8 p[] = "123456789ABCDEF";
    uint32_t len = sizeof(p) / sizeof(char);
    // cout<<len<<endl;
    cout<<"写入数据:"<<p<<endl;
    for(int i=0;i<len-1;i++) {
        // rb_putchar(rb,p[i]); 
        rb_putchar_force(rb,p[i]); 
    }
    writeprint(rb); // 9ABCDEF8                      

    uint8 singlechar = ' ';
    for(int i=0;i<4;i++) {
        rb_getchar(rb,&singlechar);
        cout<<"读单个字符: "<<singlechar<<endl;
    }
    print(rb);

    // 销毁ringbuff
    rb_destroy(rb);
}
rb->size: 8
写入数据:123456789ABCDEF
9ABCDEF8
rb->write_index: 7
rb->read_index: 7
rb->write_mirror: 1
rb->read_mirror: 0
rb_data_len: 8
rb_space_len: 0

读单个字符: 8
读单个字符: 9
读单个字符: A
读单个字符: B

rb->write_index: 7
rb->read_index: 3
rb->write_mirror: 1
rb->read_mirror: 1
rb_data_len: 4
rb_space_len: 4

销毁ringbuff~

四、RT-Thread🦥小结

来自此文总结:ring buffer,一篇文章讲透它? - 知乎 (zhihu.com)

🦝 在多线程中,对同一个环形缓冲区进行读写操作时,需要加上锁,不然存在访问不安全问题;

🦝 当只有一个读线程和一个写线程时,用rb_put和rb_get进行读写操作缓冲区是线程安全的,无需加锁;但是rb_put_force不行,因为其可能对读写索引都进行操作的场景,这个时候再进行rb_get读操作,就是不安全访问;

🦝 读写指针已经在读写(rb_get和rb_put)过程中转换为了读写索引。所以read_index(读索引)和write_index(写索引)可以直接用来操作缓冲区,无需转换;

🦝 read_index 和write_index 的大小区间为[0,n−1],n为缓冲区大小;

🦝 RT-Thread的环形缓冲区不需要buffer大小为2的幂。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/903767.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Git的正确使用姿势与最佳实践:团队协作和版本控制的最佳实践

Git是一个版本控制系统&#xff0c;用于跟踪和管理软件开发项目中的代码变更。它可以追踪文件的修改、添加和删除&#xff0c;并记录这些变更的历史。Git可以帮助团队成员协同开发&#xff0c;并提供了一种有效的方式来处理并发编辑和代码合并。 在这篇文章中&#xff0c;我们将…

大数据-玩转数据-Flink

一、说明 在电商网站中&#xff0c;订单的支付作为直接与营销收入挂钩的一环&#xff0c;在业务流程中非常重要。对于订单而言&#xff0c;为了正确控制业务流程&#xff0c;也为了增加用户的支付意愿&#xff0c;网站一般会设置一个支付失效时间&#xff0c;超过一段时间不支…

大数据从入门到放弃——浅谈数据架构的前世今生

文章目录 1. 背景2. 数据的定义及分类2.1 数据的定义2.2 数据的分类2.3 数据和信息的区别 3. 数据的作用4. 数据的那些美好时代4.1 人脑时代4.2 文件时代4.3 数据库时代4.3.1 大服务器时代4.3.2 读写分离时代4.4 数据库的分布式时代4.5 云端时代 5. 数据的未来 1. 背景 随着云时…

excel 核心快捷键用法

1、wps怎样只复制公示计算出来的数据 1.1、按下快捷键“CtrlC”&#xff0c;复制该单元格。 1.2、按下快捷键“ShiftCtrlV”&#xff0c;即“粘贴为数值”&#xff0c;即可只复制数字而不复制该单元格的公式 1.3、wps怎样只复制公示计算出来的数据_百度知道https://zhidao.baid…

【福建事业单位-综合基础知识】05民法典

这里写自定义目录标题 一、民法概述概念原则总结 二、自然人概念总结 三、民事法律行为总结 民法考察2-4题&#xff08;重点总则篇&#xff09; 一、民法概述 概念原则 总结 二、自然人 概念 总结 三、民事法律行为 总结

【python】正则表达式

本文介绍正则表达式常用的用法。 有哪些正则字符 正则表达式中有各种各样的正则字符&#xff0c;用于匹配不同情况下的字符串。具体如下&#xff1a; 使用 re 模块进行字符串匹配 比如&#xff0c;我们要从 ‘Xiaoshuaib has 100 bananas’ 中匹配一个数字&#xff0c;可…

Zoho Books的安全性和数据保护:财务信息安全的保障措施揭秘

在信息化时代&#xff0c;如何保障企业信息安全是十分重要的问题&#xff0c;尤其是财务信息。财务管理工具的安全性是否有保障是许多用户担心的问题。 Zoho Books财务管理工具为客户提供了一系列的数据保护和安全措施&#xff0c;以确保客户财务信息的安全。 1. 采用高度加密…

漏洞指北-VluFocus靶场专栏-工具篇

漏洞指北-VluFocus靶场专栏-番外篇奇技淫巧 &#x1f338;1、burp suite 、中国蚁剑工具、Strut2扫描软件地址&#x1f338;&#x1f338;2、burp suite使用&#x1f338;step1 浏览器开启代理&#xff0c;**推荐使用&#xff1a;SwitchyOmega** step2 确认浏览器端口和burp su…

LeetCode 542. 01 Matrix【多源BFS】中等

本文属于「征服LeetCode」系列文章之一&#xff0c;这一系列正式开始于2021/08/12。由于LeetCode上部分题目有锁&#xff0c;本系列将至少持续到刷完所有无锁题之日为止&#xff1b;由于LeetCode还在不断地创建新题&#xff0c;本系列的终止日期可能是永远。在这一系列刷题文章…

栈空间和栈帧

如图所示&#xff0c;栈空间是每个线程私有的&#xff0c;其中每个方法有一个栈帧&#xff0c;里面保存了局部变量 返回地址等信息。 如果是多线程&#xff0c;每个线程都会有一个栈空间。 多线程切换的时候需要保存局部变量、当前的地址等信息。 线程上下文切换的时机&…

mybatis入门Idea搭建

一、概念 1、什么是mybatis&#xff1f; MyBatis是一个开源的Java持久层框架&#xff0c;它提供了一种简化数据库访问的方式。它的主要作用是将Java对象与数据库表之间进行映射&#xff0c;使开发者可以通过面向对象的方式操作数据库&#xff0c;而不需要编写大量的SQL语句。M…

线性代数的学习和整理5: 矩阵的加减乘除及其几何意义(未完成,建设ing)

目录 1 矩阵加法 1.1 矩阵加法的定义 1.2 加法的属性 1.2.1 只有同类型&#xff0c;相同n*m的矩阵才可以相加 1.2.1 矩阵加法的可交换律&#xff1a; 1.2.2 矩阵加法的可结合律&#xff1a; 1.3矩阵加法的几何意义 2 矩阵的减法 2.1 矩阵减法定义和原理基本同 矩阵的…

前端学习记录~2023.8.3~JavaScript重难点实例精讲~第5章 DOM与事件

第 5 章 DOM与事件 前言5.1 DOM选择器5.1.1 传统原生JavaScript选择器&#xff08;1&#xff09;通过id定位&#xff08;2&#xff09;通过class定位&#xff08;3&#xff09;通过name属性定位&#xff08;4&#xff09;通过标签名定位 5.1.2 新型的querySelector选择器和quer…

虚拟内存机制1

虚拟内存机制 计算机的存储系统 为什么要有虚拟内存&#xff1f; 在早期的计算机中&#xff0c;是没有虚拟内存的概念的。我们要运行一个程序&#xff0c;会把程序全部装入内存&#xff0c;然后运行。当运行多个程序时&#xff0c;经常会出现以下问题&#xff1a; 进程地址空…

2022年国考行政执法卷-判断推理

去掉重复题 例题 例题 例题 例题 例题 例题 例题 例题 例题 例题 类比推理 例题 例题 例题 例题 例题 例题

【汇编语言】CS、IP寄存器

文章目录 修改CS、IP的指令转移指令jmp问题分析 修改CS、IP的指令 理论&#xff1a;CPU执行何处的指令&#xff0c;取决于CS:IP应用&#xff1a;程序员可以通过改变CS、IP中的内容&#xff0c;进行控制CPU即将要执行的目标指令&#xff1b;问题&#xff1a;如何改变CS、IP中的…

go: go.mod file not found in current directory or any parent directory.

go version go 1.20.7 go 1.17 以后都是用 go install 命令 D:\Go\bin\go.exe get -u github.com/nsf/gocode D:\Go\bin\go.exe get -u golang.org/x/tools/cmd/guru D:\Go\bin\go.exe get -u github.com/rogpeppe/godef>> Running: D:\Go\bin\go.exe get -u github.com…

Kubernetes_Scheduler_资源调度

文章目录 一、前言二、k8s 资源模型2.1 Node 资源抽象2.1.1 Capacity2.1.2 Allocatable2.1.3 Allocated 2.2 Node 资源切分&#xff08;预留&#xff09;2.2.1 SystemReserved2.2.2 KubeReserved2.2.3 EvictionThreshold&#xff08;驱逐门限&#xff09;2.2.4 Allocatable 2.3…

二叉树搜索

✅<1>主页&#xff1a;我的代码爱吃辣&#x1f4c3;<2>知识讲解&#xff1a;数据结构——二叉搜索树☂️<3>开发环境 &#xff1a;Visual Studio 2022&#x1f4ac;<4>前言&#xff1a;在之前的我们已经学过了普通二叉树&#xff0c;了解了基本的二叉树…