【深入探究人工智能】:常见机器学习算法总结

news2025/1/22 15:43:00

文章目录

  • 1、前言
    • 1.1 机器学习算法的两步骤
    • 1.2 机器学习算法分类
  • 2、逻辑回归算法
    • 2.1 逻辑函数
    • 2.2 逻辑回归可以用于多类分类
    • 2.3 逻辑回归中的系数
  • 3、线性回归算法
    • 3.1 线性回归的假设
    • 3.2 确定线性回归模型的拟合优度
    • 3.3线性回归中的异常值处理
  • 4、支持向量机(SVM)算法
    • 4.1 优点
    • 4.2 缺点
  • 🍀小结🍀

在这里插入图片描述
在这里插入图片描述

🎉博客主页:小智_x0___0x_

🎉欢迎关注:👍点赞🙌收藏✍️留言

🎉系列专栏:小智带你闲聊

🎉代码仓库:小智的代码仓库


1、前言

机器学习算法是一种基于数据和经验的算法,通过对大量数据的学习和分析,自动发现数据中的模式、规律和关联,并利用这些模式和规律来进行预测、分类或优化等任务。机器学习算法的目标是从数据中提取有用的信息和知识,并将其应用于新的未知数据中。
在这里插入图片描述

1.1 机器学习算法的两步骤

机器学习算法通常包括两个主要步骤:训练和预测。在训练阶段,算法使用一部分已知数据(训练数据集)来学习模型或函数的参数,以使其能够对未知数据做出准确的预测或分类。在预测阶段,算法将学习到的模型应用于新的数据,通过模型对数据进行预测、分类或其他任务。

1.2 机器学习算法分类

机器学习算法可以是基于统计学原理、优化方法、神经网络等等。根据学习的方式不同,机器学习算法可以分为监督学习、无监督学习和强化学习等几种类型。不同的机器学习算法适用于不同的问题和数据类型,选择合适的算法可以提高机器学习的任务效果。

  1. 监督学习算法:监督学习算法需要训练数据集中包含输入和对应的输出(或标签)信息。常用的监督学习算法包括:线性回归、逻辑回归、决策树、支持向量机、朴素贝叶斯、人工神经网络等。

  2. 无监督学习算法:无监督学习算法不需要训练数据集中的输出信息,主要用于数据的聚类和降维等问题。常用的无监督学习算法包括:K均值聚类、层次聚类、主成分分析、关联规则挖掘等。

  3. 强化学习算法:强化学习算法通过与环境进行交互,试图找到最优策略来最大化奖励。常用的强化学习算法包括:Q学习、深度强化学习算法等。

此外,还有一些常用的机器学习算法和技术,如集成学习、降维方法、深度学习、迁移学习、半监督学习等,它们通过不同的方式和建模方法来解决不同的问题。选择合适的机器学习算法需要考虑问题的性质、数据的特点、算法的可解释性和计算效率等因素。

2、逻辑回归算法

逻辑回归是一种统计方法,用于根据一个或多个自变量预测二元结果,例如成功或失败。它是机器学习中的一种流行技术,通常用于分类任务,例如确定电子邮件是否是垃圾邮件,或预测客户是否会流失。

在这里插入图片描述
逻辑回归模型基于逻辑函数,逻辑函数是一个sigmoid函数,它将输入变量映射到 0 到 1 之间的概率。然后使用该概率对结果进行预测。

逻辑回归模型由以下方程表示:

P ( y = 1 ∣ x ) = 1 / ( 1 + e − ( b 0 + b 1 x 1 + b 2 x 2 + … + b n ∗ x n ) ) P(y=1|x) = 1/(1+e^-(b0 + b1x1 + b2x2 + … + bn*xn)) P(y=1∣x)=1/(1+e(b0+b1x1+b2x2++bnxn))

其中 P(y=1|x) 是给定输入变量 x 时结果 y 为 1 的概率,b0 是截距,b1, b2, …, bn 是输入变量 x1, x2, … 的系数, xn。通过在数据集上训练模型并使用优化算法(例如梯度下降)来最小化成本函数(通常是对数损失)来确定系数。模型训练完成后,就可以通过输入新数据并计算结果为 1 的概率来进行预测。将结果分类为 1 或 0 的阈值通常设置为 0.5,但这可以根据情况进行调整具体任务以及误报和漏报之间所需的权衡。

2.1 逻辑函数

逻辑函数,也称为 s i g m o i d sigmoid sigmoid函数,是一条 S 形曲线,将任何实数值映射到 0 到 1 之间的值。它的定义为 f ( x ) = 1 / ( 1 + e − x ) f(x) = 1 / (1 + e^-x ) f(x)=1/(1+ex)其中 e 是自然对数的底。逻辑函数在逻辑回归中用于对二元结果的概率进行建模。

在这里插入图片描述

2.2 逻辑回归可以用于多类分类

逻辑回归可用于多类分类,方法是为每个类创建单独的二元逻辑回归模型并选择预测概率最高的类。这被称为一对一或一对一的方法。或者,我们可以使用 s o f t m a x softmax softmax回归,它是逻辑回归的推广,可以直接处理多个类。

2.3 逻辑回归中的系数

逻辑回归中的系数表示在保持所有其他预测变量不变的情况下,预测变量发生一个单位变化时结果的对数几率的变化。优势比可用于解释系数的大小。优势比大于 1 表示预测变量增加一个单位会增加结果的可能性,而优势比小于 1 表示预测变量增加一个单位会降低结果的可能性。

3、线性回归算法

线性回归是一种统计方法,用于检查两个连续变量之间的关系:一个自变量和一个因变量。线性回归的目标是通过一组数据点找到最佳拟合线,然后可用于对未来的观察进行预测。

在这里插入图片描述

简单线性回归模型的方程为:

y = b 0 + b 1 ∗ x y = b0 + b1*x y=b0+b1x
其中 y 是因变量,x 是自变量,b0 是 y 截距(直线与 y 轴的交点),b1 是直线的斜率。斜率表示给定 x 变化时 y 的变化。

为了确定最佳拟合线,我们使用最小二乘法,该方法找到使预测 y 值与实际 y 值之间的平方差之和最小化的线。线性回归也可以扩展到多个自变量,称为多元线性回归。多元线性回归模型的方程为: y = b 0 + b 1 x 1 + b 2 x 2 + … + b n ∗ x n y = b0 + b1x1 + b2x2 + … + bn*xn y=b0+b1x1+b2x2++bnxn。其中 x1, x2, …, xn 是自变量,b1, b2, …, bn 是相应的系数。

线性回归可用于简单线性回归和多元线性回归问题。系数 b0 和 b1, …, bn 使用最小二乘法估计。一旦估计了系数,它们就可以用于对因变量进行预测。线性回归可用于对未来进行预测,例如预测股票的价格或将出售的产品的单位数量。然而,线性回归是一种相对简单的方法,可能并不适合所有问题。它假设自变量和因变量之间的关系是线性的,但情况可能并非总是如此。此外,线性回归对异常值高度敏感,这意味着如果存在任何不遵循数据总体趋势的极值,将会显着影响模型的准确性。

总之,线性回归是一种强大且广泛使用的统计方法,可用于检查两个连续变量之间的关系。它是一个简单但功能强大的工具,可用于预测未来。但是,请务必记住,线性回归假设变量之间存在线性关系,并且对异常值敏感,这可能会影响模型的准确性。

3.1 线性回归的假设

  • 线性:自变量和因变量之间的关系是线性的。

  • 独立性:观察结果彼此独立。

  • 同方差性:误差项的方差在自变量的所有水平上都是恒定的。

  • 正态性:误差项呈正态分布。

  • 无多重共线性:自变量彼此不高度相关。

  • 无自相关:误差项与其自身不自相关。

3.2 确定线性回归模型的拟合优度

有多种方法可以确定线性回归模型的拟合优度:

  • R 平方:R 平方是一种统计度量,表示因变量中的方差由模型中的自变量解释的比例。R 平方值为 1 表示模型解释了因变量中的所有方差,值为 0 表示模型没有解释任何方差。

  • 调整 R 平方:调整 R 平方是 R 平方的修改版本,它考虑了模型中自变量的数量。在比较具有不同数量自变量的模型时,它可以更好地指示模型的拟合优度。

  • 均方根误差 (RMSE):RMSE 衡量预测值与实际值之间的差异。RMSE 较低表明模型与数据的拟合效果更好。

  • 平均绝对误差 (MAE):MAE 测量预测值与实际值之间的平均差异。MAE 越低表明模型与数据的拟合效果越好。

在这里插入图片描述

3.3线性回归中的异常值处理

线性回归中的异常值可能会对模型的预测产生重大影响,因为它们可能会扭曲回归线。处理线性回归中的异常值有多种方法,包括以下几点:

  • 删除异常值:一种选择是在训练模型之前简单地从数据集中删除异常值。然而,这可能会导致重要信息的丢失。

  • 转换数据:应用转换(例如记录数据日志)有助于减少异常值的影响。

  • 使用稳健回归方法:稳健回归方法(例如 RANSAC 或 Theil-Sen)对异常值的敏感度低于传统线性回归。

  • 使用正则化:正则化可以通过在成本函数中添加惩罚项来帮助防止由异常值引起的过度拟合。

总之,采用什么方法将取决于特定的数据集和分析的目标。

4、支持向量机(SVM)算法

支持向量机 (SVM) 是一种监督学习算法,可用于分类或回归问题。SVM 背后的主要思想是通过最大化间隔(边界与每个类最近的数据点之间的距离)来找到分隔数据中不同类的边界。这些最接近的数据点称为支持向量。

在这里插入图片描述

当数据不可线性分离(这意味着数据不能用直线分离)时,SVM 特别有用。在这些情况下,SVM 可以使用称为核技巧的技术将数据转换为更高维的空间,其中可以找到非线性边界。SVM 中使用的一些常见核函数包括多项式、径向基函数 (RBF) 和 s i g m o i d sigmoid sigmoid

SVM 的主要优点之一是它们在高维空间中非常有效,并且即使在特征数量大于样本数量时也具有良好的性能。此外,SVM 内存效率高,因为它们只需要存储支持向量,而不是整个数据集。另一方面,SVM 对核函数和算法参数的选择很敏感。还需要注意的是,SVM 不适合大型数据集,因为训练时间可能相当长。总之,支持向量机(SVM)是一种强大的监督学习算法,可用于分类和回归问题,特别是当数据不可线性分离时。该算法以其在高维空间中的良好性能以及发现非线性边界的能力而闻名。然而,它对核函数和参数的选择很敏感,也不适合大型数据集。

4.1 优点

  • 在高维空间中有效:即使当特征数量大于样本数量时,SVM 也具有良好的性能。

  • 内存效率高:SVM 只需要存储支持向量,而不需要存储整个数据集,因此内存效率高。

  • 通用性:SVM 可用于分类和回归问题,并且可以使用核技巧处理非线性可分离数据。

  • 对噪声和异常值具有鲁棒性:SVM 对数据中的噪声和异常值具有鲁棒性,因为它们仅依赖于支持向量。

4.2 缺点

  • 对核函数和参数的选择敏感:SVM 的性能高度依赖于核函数的选择和算法参数。

  • 不适合大型数据集:对于大型数据集,SVM 的训练时间可能会相当长。

  • 解释结果困难:解释 SVM 的结果可能很困难,特别是在使用非线性核时。

  • 不适用于重叠类:当类有明显重叠时,SVM 可能会遇到困难。

总之,SVM 是一种强大且通用的机器学习算法,可用于分类和回归问题,特别是当数据不可线性分离时。然而,它们可能对核函数和参数的选择敏感,不适合大型数据集,并且难以解释结果。


🍀小结🍀

今天我们学习了"机器学习算法"相信大家看完有一定的收获。种一棵树的最好时间是十年前,其次是现在! 把握好当下,合理利用时间努力奋斗,相信大家一定会实现自己的目标!加油!创作不易,辛苦各位小伙伴们动动小手,三连一波💕💕~~~,本文中也有不足之处,欢迎各位随时私信点评指正!
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/903216.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Linux的热拔插UDEV机制

文章目录 UDEV简介守护进程基本特点 守护进程和后台进程的区别开发守护进程结束 UDEV简介 udev是一个设备管理工具,udev以守护进程的形式运行,通过侦听内核发出来的uevent来管理/dev目录下的设备文件。 udev在用户空间运行,而不在内核空间 …

⛳ Java 网络编程

目录 ⛳ Java 网络编程🎨 一、TCP / IP 协议👣 二、IP 和 端口号🎁 三、TCP 网络层编程🎨 3.1、Socket⭐ 3.2、基于Socket的TCP编程 🏭 四、UDP网络编程🐾 五、URL编程 ⛳ Java 网络编程 🎨 一…

语法篇--XML数据传输格式

一、XML概述 1.1简介 XML,全称为Extensible Markup Language,即可扩展标记语言,是一种用于存储和传输数据的文本格式。它是由W3C(万维网联盟)推荐的标准,广泛应用于各种系统中,如Web服务、数据…

Handler机制(二)

在上一篇文章中,我们分析了Handler基本流程,下面分析一些上层开发很少接触的部分。 IdleHandler 从命名可以看出IdleHandler 是Handler出现空闲时的一种机制,IdleHandler是一种只有当消息队列没有消息时或者当前队列中的消息还没有到执行时…

linux 上安装es

首先 到官网 https://www.elastic.co/cn/downloads/elasticsearch 下载对应的安装包,我这里下载的是 https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-8.9.1-linux-x86_64.tar.gz 然后讲该压缩包上传到 linux 的/usr/local 目录下执行 tar -z…

Go语言入门指南:基础语法和常用特性解析(上)

一、Go语言前言 Go是一种静态类型的编译语言,常常被称作是21世纪的C语言。Go语言是一个开源项目,可以免费获取编译器、库、配套工具的源代码,也是高性能服务器和应用程序的热门选择。 Go语言可以运行在类UNIX系统——比如Linux、OpenBSD、M…

基于ChatYuan-large-v2 微调训练 医疗问答 任务

一、ChatYuan-large-v2 上篇基于ChatYuan-large-v2 语言模型 Fine-tuning 微调训练了广告生成任务,总体生成效果还可以,但上篇文章的训练是微调的模型全部的参数,本篇文章还是以 ChatYuan-large-v2 作为基础模型,继续探索仅训练解…

【100天精通python】Day38:GUI界面编程_PyQt 从入门到实战(中)_数据库操作与多线程编程

目录 专栏导读 4 数据库操作 4.1 连接数据库 4.2 执行 SQL 查询和更新: 4.3 使用模型和视图显示数据 5 多线程编程 5.1 多线程编程的概念和优势 5.2 在 PyQt 中使用多线程 5.3 处理多线程间的同步和通信问题 5.3.1 信号槽机制 5.3.2 线程安全的数据访问 Q…

Spring Boot整合RabbitMQ之发布与订阅模式

RabbitMQ的模式中,常用的模式有:简单模式,发布与订阅模式,工作模式,路由模式,主题模式。简单模式不太会运用到工作中,我们可以使用 RabbitMQ 的发布订阅模式,实现: 用户…

KUST_LI计算机视觉实验室服务器安装与管理

第一步:安装 Linux-Ubuntu系统 系统语言设置为英文 ENGLISH,防止系统 BUG;选择-清除整个磁盘并安装系统;设置用户名和密码,实验室统一其余全部默认设置 开机后设置磁盘挂载 在系统设置中找到 desk 打开,…

YOLOv7训练结果解析

前言: 已训练完模型,且把结果下载下来,以下某一次id识别训练结果为例,如下图所示。 注:YOLOv7每次train完成(如果没有中途退出)都会在run目录下生成expX目录(X代表生成结果次数 第一…

CentOS7.9手工配置静态网络流程

进入网卡配置文件 vim /etc/sysconfig/network-scripts/ifcfg-ens33 配置 TYPE"Ethernet" PROXY_METHOD"none" BROWSER_ONLY"no" BOOTPROTO"static" //static 配置静态网络 DEFROUTE"yes" IPV4_FAILURE_FATAL"no…

电脑找不到MSVCR120.dll怎么办,三个完美解决方法

在计算机领域,MSVCR120.dll是一个非常重要的动态链接库文件。它是Microsoft Visual C 2010 Redistributable Package的一部分,用于支持某些程序的运行。然而,在某些情况下,我们可能会遇到MSVCR120.dll丢失的问题。在这篇文章中&am…

(详解踩坑)GIT版本回滚git stash、git reset、git reset --hard、git revert

目录 背景 一、(git log、git reflog)查看git提交日志及命令历史 1.1 git log(提交日志) 1.2 git reflog(命令历史) 二、git reset(回退到指定的版本,并且保留更改) …

LEADTOOLS Imaging SDK Crack

LEADTOOLS Imaging SDK Crack 高级开发人员工具包包括ActiveX和WPF/XAML控件。 LEADTOOLS Imaging SDK为文件格式导入/导出、图像压缩、图像显示和效果、颜色转换、图像处理、TWAIN扫描、图像通用对话框、数据库集成、打印和互联网提供了基本和高级的彩色图像功能。 LEADTOOLS …

【数据分享】2013-2023年全国370个城市逐月空气质量数据(Excel格式/无需转发)

空气质量的好坏反映了空气污染程度,它是依据空气中污染物浓度的高低来判断的。在各项涉及城市环境的研究与实际项目中,城市空气质量都是一个十分重要的指标。那么,去哪里能获取到各城市空气质量的历史数据呢? 之前我们分享了2014…

前端vue自定义柱形图 选中更改柱形图颜色及文字标注颜色

随着技术的发展,开发的复杂度也越来越高,传统开发方式将一个系统做成了整块应用,经常出现的情况就是一个小小的改动或者一个小功能的增加可能会引起整体逻辑的修改,造成牵一发而动全身。 通过组件化开发,可以有效实现…

Dubbo高手之路3,Dubbo服务消费详解

目录 引言1. 介绍 Dubbo 服务消费的详解的目的和背景2. 概述 Dubbo 服务消费的过程和核心概念 一、Dubbo 服务消费的基础知识1. Dubbo 服务消费的架构和流程2. Dubbo 服务消费的基本配置和使用方法 二、Dubbo 服务消费的注册与发现1. Dubbo 服务消费的注册中心和发布中心的基本…

09_Redlock算法和底层源码分析

Redlock算法和底层源码分析 一、当前代码为8.0版接上一步 自研分布式锁的重点: 按照juc里面Lock接口规范进行编写lock加锁关键逻辑 加锁:在redis中,加锁实际上是给key设置一个值,为避免死锁,并给key一个过期时间自旋…