EMO实战:使用EMO实现图像分类任务(二)

news2025/1/11 4:27:16

文章目录

  • 训练部分
    • 导入项目使用的库
    • 设置随机因子
    • 设置全局参数
    • 图像预处理与增强
    • 读取数据
    • 设置Loss
    • 设置模型
    • 设置优化器和学习率调整策略
    • 设置混合精度,DP多卡,EMA
    • 定义训练和验证函数
      • 训练函数
      • 验证函数
      • 调用训练和验证方法
  • 运行以及结果查看
  • 关于EMA设置为True时,不上分的问题
  • 测试
  • 热力图可视化展示
  • 完整的代码

在上一篇文章中完成了前期的准备工作,见链接:
EMO实战:使用EMO实现图像分类任务(一)
这篇主要是讲解如何训练和测试

训练部分

完成上面的步骤后,就开始train脚本的编写,新建train.py

导入项目使用的库

在train.py导入

import json
import os
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.optim as optim
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
from timm.utils import accuracy, AverageMeter, ModelEma
from sklearn.metrics import classification_report
from timm.data.mixup import Mixup
from timm.loss import SoftTargetCrossEntropy
from models.emo import EMO_1M
from torch.autograd import Variable
from torchvision import datasets
torch.backends.cudnn.benchmark = False
import warnings
warnings.filterwarnings("ignore")
os.environ['CUDA_VISIBLE_DEVICES']="0,1"

os.environ[‘CUDA_VISIBLE_DEVICES’]=“0,1” 选择显卡,index从0开始,比如一台机器上有8块显卡,我们打算使用前两块显卡训练,设置为“0,1”,同理如果打算使用第三块和第六块显卡训练,则设置为“2,5”。

设置随机因子

def seed_everything(seed=42):
    os.environ['PYHTONHASHSEED'] = str(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    torch.backends.cudnn.deterministic = True

设置了固定的随机因子,再次训练的时候就可以保证图片的加载顺序不会发生变化。

设置全局参数

if __name__ == '__main__':
   #创建保存模型的文件夹
    file_dir = 'checkpoints/emo/'
    if os.path.exists(file_dir):
        print('true')
        os.makedirs(file_dir,exist_ok=True)
    else:
        os.makedirs(file_dir)

    # 设置全局参数
    model_lr = 1e-4
    BATCH_SIZE = 16
    EPOCHS = 300
    DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
    use_amp = True  # 是否使用混合精度
    use_dp = True #是否开启dp方式的多卡训练
    classes = 12
    resume =None
    CLIP_GRAD = 5.0
    Best_ACC = 0 #记录最高得分
    use_ema=True
    model_ema_decay=0.9998
    start_epoch=1
    seed=1
    seed_everything(seed)

设置存放权重文件的文件夹,如果文件夹存在删除再建立。

接下来,设置全局参数,比如:学习率、BatchSize、epoch等参数,判断环境中是否存在GPU,如果没有则使用CPU。
注:建议使用GPU,CPU太慢了。

参数的详细解释:

model_lr:学习率,根据实际情况做调整。

BATCH_SIZE:batchsize,根据显卡的大小设置。

EPOCHS:epoch的个数,一般300够用。

use_amp:是否使用混合精度。

use_dp :是否开启dp方式的多卡训练?

classes:类别个数。

resume:再次训练的模型路径,如果不为None,则表示加载resume指向的模型继续训练。

CLIP_GRAD:梯度的最大范数,在梯度裁剪里设置。

Best_ACC:记录最高ACC得分。

use_ema:是否使用ema

start_epoch:开始的epoch,默认是1,如果重新训练时,需要给start_epoch重新赋值。

SEED:随机因子,数值可以随意设定,但是设置后,不要随意更改,更改后,图片加载的顺序会改变,影响测试结果。

 file_dir = 'checkpoints/MobileViG'

这是存放seaformer模型的路径。

图像预处理与增强

   # 数据预处理7
    transform = transforms.Compose([
        transforms.RandomRotation(10),
        transforms.GaussianBlur(kernel_size=(5,5),sigma=(0.1, 3.0)),
        transforms.ColorJitter(brightness=0.5, contrast=0.5, saturation=0.5),
        transforms.Resize((224, 224)),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.3281186, 0.28937867, 0.20702125], std= [0.09407319, 0.09732835, 0.106712654])

    ])
    transform_test = transforms.Compose([
        transforms.Resize((224, 224)),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.3281186, 0.28937867, 0.20702125], std= [0.09407319, 0.09732835, 0.106712654])
    ])
    mixup_fn = Mixup(
        mixup_alpha=0.8, cutmix_alpha=1.0, cutmix_minmax=None,
        prob=0.1, switch_prob=0.5, mode='batch',
        label_smoothing=0.1, num_classes=classes)

数据处理和增强比较简单,加入了随机10度的旋转、高斯模糊、色彩饱和度明亮度的变化、Mixup等比较常用的增强手段,做了Resize和归一化。

 transforms.Normalize(mean=[0.3281186, 0.28937867, 0.20702125], std= [0.09407319, 0.09732835, 0.106712654])

这里设置为计算mean和std。
这里注意下Resize的大小,由于选用的CloFormer模型输入是224×224的大小,所以要Resize为224×224。

读取数据

   # 读取数据
    dataset_train = datasets.ImageFolder('data/train', transform=transform)
    dataset_test = datasets.ImageFolder("data/val", transform=transform_test)
    with open('class.txt', 'w') as file:
        file.write(str(dataset_train.class_to_idx))
    with open('class.json', 'w', encoding='utf-8') as file:
        file.write(json.dumps(dataset_train.class_to_idx))
    # 导入数据
    train_loader = torch.utils.data.DataLoader(dataset_train, batch_size=BATCH_SIZE, pin_memory=True,shuffle=True,drop_last=True)
    test_loader = torch.utils.data.DataLoader(dataset_test, batch_size=BATCH_SIZE, pin_memory=True,shuffle=False)
  • 使用pytorch默认读取数据的方式,然后将dataset_train.class_to_idx打印出来,预测的时候要用到。

  • 对于train_loader ,drop_last设置为True,因为使用了Mixup数据增强,必须保证每个batch里面的图片个数为偶数(不能为零),如果最后一个batch里面的图片为奇数,则会报错,所以舍弃最后batch的迭代。pin_memory设置为True,可以加快运行速度。

  • 将dataset_train.class_to_idx保存到txt文件或者json文件中。

class_to_idx的结果:

{'Black-grass': 0, 'Charlock': 1, 'Cleavers': 2, 'Common Chickweed': 3, 'Common wheat': 4, 'Fat Hen': 5, 'Loose Silky-bent': 6, 'Maize': 7, 'Scentless Mayweed': 8, 'Shepherds Purse': 9, 'Small-flowered Cranesbill': 10, 'Sugar beet': 11}

设置Loss

  # 实例化模型并且移动到GPU
    criterion_train = SoftTargetCrossEntropy()
    criterion_val = torch.nn.CrossEntropyLoss()

设置loss函数,训练的loss为:SoftTargetCrossEntropy,验证的loss:nn.CrossEntropyLoss()。

设置模型

   #设置模型
    model_ft = EMO_1M(pretrained=False)
    model_ft.reset_classifier(classes)
    # num_fr = model_ft.dist_head.in_channels
    # model_ft.dist_head = nn.Conv2d(num_fr, classes, 1, bias=True)
    print(model_ft)
    if resume:
        model=torch.load(resume)
        print(model['state_dict'].keys())
        model_ft.load_state_dict(model['state_dict'])
        Best_ACC=model['Best_ACC']
        start_epoch=model['epoch']+1
    model_ft.to(DEVICE)
  • 设置模型为EMO_1M,由于没有预训练模型,所以将pretrained设置为False。使用reset_classifier方法修改classes。

  • 如果resume设置为已经训练的模型的路径,则加载模型接着resume指向的模型接着训练,使用模型里的Best_ACC初始化Best_ACC,使用epoch参数初始化start_epoch。

  • 如果模型输出是classes的长度,则表示修改正确了。

设置优化器和学习率调整策略

   # 选择简单暴力的Adam优化器,学习率调低
   optimizer = optim.AdamW(model_ft.parameters(),lr=model_lr)
   cosine_schedule = optim.lr_scheduler.CosineAnnealingLR(optimizer=optimizer, T_max=20, eta_min=1e-6)
  • 优化器设置为adamW。
  • 学习率调整策略选择为余弦退火。

设置混合精度,DP多卡,EMA

    if use_amp:
        scaler = torch.cuda.amp.GradScaler()
    if torch.cuda.device_count() > 1 and use_dp:
        print("Let's use", torch.cuda.device_count(), "GPUs!")
        model_ft = torch.nn.DataParallel(model_ft)
    if use_ema:
        model_ema = ModelEma(
            model_ft,
            decay=model_ema_decay,
            device=DEVICE,
            resume=resume)
    else:
        model_ema=None
  • use_amp为True,则开启混合精度训练,声明pytorch自带的混合精度 torch.cuda.amp.GradScaler()。
  • 检测可用显卡的数量,如果大于1,并且开启多卡训练的情况下,则要用torch.nn.DataParallel加载模型,开启多卡训练。
  • 如果使用ema,则注册ema
    注:torch.nn.DataParallel方式,默认不能开启混合精度训练的,如果想要开启混合精度训练,则需要在模型的forward前面加上@autocast()函数。

在这里插入图片描述

如果不开启混合精度则要将@autocast()去掉,否则loss一直试nan。

定义训练和验证函数

训练函数

# 定义训练过程
def train(model, device, train_loader, optimizer, epoch,model_ema):
    model.train()
    loss_meter = AverageMeter()
    acc1_meter = AverageMeter()
    acc5_meter = AverageMeter()
    total_num = len(train_loader.dataset)
    print(total_num, len(train_loader))
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device, non_blocking=True), Variable(target).to(device,                                                                                 non_blocking=True)
        samples, targets = mixup_fn(data, target)
        output = model(samples)
        optimizer.zero_grad()
        if use_amp:
            with torch.cuda.amp.autocast():
                loss = torch.nan_to_num(criterion_train(output, targets))
            scaler.scale(loss).backward()
            torch.nn.utils.clip_grad_norm_(model.parameters(), CLIP_GRAD)
            # Unscales gradients and calls
            # or skips optimizer.step()
            scaler.step(optimizer)
            # Updates the scale for next iteration
            scaler.update()
        else:
            loss = criterion_train(output, targets)
            loss.backward()
            # torch.nn.utils.clip_grad_norm_(model.parameters(), CLIP_GRAD)
            optimizer.step()

        if model_ema is not None:
            model_ema.update(model)
        torch.cuda.synchronize()
        lr = optimizer.state_dict()['param_groups'][0]['lr']
        loss_meter.update(loss.item(), target.size(0))
        acc1, acc5 = accuracy(output, target, topk=(1, 5))
        loss_meter.update(loss.item(), target.size(0))
        acc1_meter.update(acc1.item(), target.size(0))
        acc5_meter.update(acc5.item(), target.size(0))
        if (batch_idx + 1) % 10 == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}\tLR:{:.9f}'.format(
                epoch, (batch_idx + 1) * len(data), len(train_loader.dataset),
                       100. * (batch_idx + 1) / len(train_loader), loss.item(), lr))
    ave_loss =loss_meter.avg
    acc = acc1_meter.avg
    print('epoch:{}\tloss:{:.2f}\tacc:{:.2f}'.format(epoch, ave_loss, acc))
    return ave_loss, acc

训练的主要步骤:

1、使用AverageMeter保存自定义变量,包括loss,ACC1,ACC5。

2、进入循环,将data和target放入device上,non_blocking设置为True。如果pin_memory=True的话,将数据放入GPU的时候,也应该把non_blocking打开,这样就只把数据放入GPU而不取出,访问时间会大大减少。
如果pin_memory=False时,则将non_blocking设置为False。

3、将数据输入mixup_fn生成mixup数据。

4、将第三部生成的mixup数据输入model,输出预测结果,然后再计算loss。

5、 optimizer.zero_grad() 梯度清零,把loss关于weight的导数变成0。

6、如果使用混合精度,则

  • with torch.cuda.amp.autocast(),开启混合精度。
  • 计算loss。torch.nan_to_num将输入中的NaN、正无穷大和负无穷大替换为NaN、posinf和neginf。默认情况下,nan会被替换为零,正无穷大会被替换为输入的dtype所能表示的最大有限值,负无穷大会被替换为输入的dtype所能表示的最小有限值。
  • scaler.scale(loss).backward(),梯度放大。
  • torch.nn.utils.clip_grad_norm_,梯度裁剪,放置梯度爆炸。
  • scaler.step(optimizer) ,首先把梯度值unscale回来,如果梯度值不是inf或NaN,则调用optimizer.step()来更新权重,否则,忽略step调用,从而保证权重不更新。
  • 更新下一次迭代的scaler。

否则,直接反向传播求梯度。torch.nn.utils.clip_grad_norm_函数执行梯度裁剪,防止梯度爆炸。

7、如果use_ema为True,则执行model_ema的updata函数,更新模型。

8、 torch.cuda.synchronize(),等待上面所有的操作执行完成。

9、接下来,更新loss,ACC1,ACC5的值。

等待一个epoch训练完成后,计算平均loss和平均acc

验证函数

# 验证过程
@torch.no_grad()
def val(model, device, test_loader):
    global Best_ACC
    model.eval()
    loss_meter = AverageMeter()
    acc1_meter = AverageMeter()
    acc5_meter = AverageMeter()
    total_num = len(test_loader.dataset)
    print(total_num, len(test_loader))
    val_list = []
    pred_list = []
    for data, target in test_loader:
        for t in target:
            val_list.append(t.data.item())
        data, target = data.to(device,non_blocking=True), target.to(device,non_blocking=True)
        output = model(data)
        loss = criterion_val(output, target)
        _, pred = torch.max(output.data, 1)
        for p in pred:
            pred_list.append(p.data.item())
        acc1, acc5 = accuracy(output, target, topk=(1, 5))
        loss_meter.update(loss.item(), target.size(0))
        acc1_meter.update(acc1.item(), target.size(0))
        acc5_meter.update(acc5.item(), target.size(0))
    acc = acc1_meter.avg
    print('\nVal set: Average loss: {:.4f}\tAcc1:{:.3f}%\tAcc5:{:.3f}%\n'.format(
        loss_meter.avg,  acc,  acc5_meter.avg))
    if acc > Best_ACC:
        if isinstance(model, torch.nn.DataParallel):
            torch.save(model.module, file_dir + '/' + 'best.pth')
        else:
            torch.save(model, file_dir + '/' + 'best.pth')
        Best_ACC = acc
    if isinstance(model, torch.nn.DataParallel):
        state = {
            'epoch': epoch,
            'state_dict': model.module.state_dict(),
            'Best_ACC':Best_ACC
        }
        if use_ema:
            state['state_dict_ema']=model.module.state_dict()
        torch.save(state, file_dir + "/" + 'model_' + str(epoch) + '_' + str(round(acc, 3)) + '.pth')
    else:
        state = {
            'epoch': epoch,
            'state_dict': model.state_dict(),
            'Best_ACC': Best_ACC
        }
        if use_ema:
            state['state_dict_ema']=model.state_dict()
        torch.save(state, file_dir + "/" + 'model_' + str(epoch) + '_' + str(round(acc, 3)) + '.pth')
    return val_list, pred_list, loss_meter.avg, acc

验证集和训练集大致相似,主要步骤:

1、在val的函数上面添加@torch.no_grad(),作用:所有计算得出的tensor的requires_grad都自动设置为False。即使一个tensor(命名为x)的requires_grad = True,在with torch.no_grad计算,由x得到的新tensor(命名为w-标量)requires_grad也为False,且grad_fn也为None,即不会对w求导。

2、定义参数:
loss_meter: 测试的loss
acc1_meter:top1的ACC。
acc5_meter:top5的ACC。
total_num:总的验证集的数量。
val_list:验证集的label。
pred_list:预测的label。

3、进入循环,迭代test_loader:

将label保存到val_list。

将data和target放入device上,non_blocking设置为True。

将data输入到model中,求出预测值,然后输入到loss函数中,求出loss。

调用torch.max函数,将预测值转为对应的label。

将输出的预测值的label存入pred_list。

调用accuracy函数计算ACC1和ACC5

更新loss_meter、acc1_meter、acc5_meter的参数。

4、本次epoch循环完成后,求得本次epoch的acc、loss。
5、接下来是保存模型的逻辑
如果ACC比Best_ACC高,则保存best模型
判断模型是否为DP方式训练的模型。

如果是DP方式训练的模型,模型参数放在model.module,则需要保存model.module。
否则直接保存model。
注:保存best模型,我们采用保存整个模型的方式,这样保存的模型包含网络结构,在预测的时候,就不用再重新定义网络了。

6、接下来保存每个epoch的模型。
判断模型是否为DP方式训练的模型。

如果是DP方式训练的模型,模型参数放在model.module,则需要保存model.module.state_dict()。

新建个字典,放置Best_ACC、epoch和 model.module.state_dict()等参数。然后将这个字典保存。判断是否是使用EMA,如果使用,则还需要保存一份ema的权重。
否则,新建个字典,放置Best_ACC、epoch和 model.state_dict()等参数。然后将这个字典保存。判断是否是使用EMA,如果使用,则还需要保存一份ema的权重。

注意:对于每个epoch的模型只保存了state_dict参数,没有保存整个模型文件。

调用训练和验证方法

    # 训练与验证
    is_set_lr = False
    log_dir = {}
    train_loss_list, val_loss_list, train_acc_list, val_acc_list, epoch_list = [], [], [], [], []
    if resume and os.path.isfile(file_dir+"result.json"):
        with open(file_dir+'result.json', 'r', encoding='utf-8') as file:
            logs = json.load(file)
            train_acc_list = logs['train_acc']
            train_loss_list = logs['train_loss']
            val_acc_list = logs['val_acc']
            val_loss_list = logs['val_loss']
            epoch_list = logs['epoch_list']
    for epoch in range(start_epoch, EPOCHS + 1):
        epoch_list.append(epoch)
        log_dir['epoch_list'] = epoch_list
        train_loss, train_acc = train(model_ft, DEVICE, train_loader, optimizer, epoch,model_ema)
        train_loss_list.append(train_loss)
        train_acc_list.append(train_acc)
        log_dir['train_acc'] = train_acc_list
        log_dir['train_loss'] = train_loss_list
        if use_ema:
            val_list, pred_list, val_loss, val_acc = val(model_ema.ema, DEVICE, test_loader)
        else:
            val_list, pred_list, val_loss, val_acc = val(model_ft, DEVICE, test_loader)
        val_loss_list.append(val_loss)
        val_acc_list.append(val_acc)
        log_dir['val_acc'] = val_acc_list
        log_dir['val_loss'] = val_loss_list
        log_dir['best_acc'] = Best_ACC
        with open(file_dir + '/result.json', 'w', encoding='utf-8') as file:
            file.write(json.dumps(log_dir))
        print(classification_report(val_list, pred_list, target_names=dataset_train.class_to_idx))
        if epoch < 600:
            cosine_schedule.step()
        else:
            if not is_set_lr:
                for param_group in optimizer.param_groups:
                    param_group["lr"] = 1e-6
                    is_set_lr = True
        fig = plt.figure(1)
        plt.plot(epoch_list, train_loss_list, 'r-', label=u'Train Loss')
        # 显示图例
        plt.plot(epoch_list, val_loss_list, 'b-', label=u'Val Loss')
        plt.legend(["Train Loss", "Val Loss"], loc="upper right")
        plt.xlabel(u'epoch')
        plt.ylabel(u'loss')
        plt.title('Model Loss ')
        plt.savefig(file_dir + "/loss.png")
        plt.close(1)
        fig2 = plt.figure(2)
        plt.plot(epoch_list, train_acc_list, 'r-', label=u'Train Acc')
        plt.plot(epoch_list, val_acc_list, 'b-', label=u'Val Acc')
        plt.legend(["Train Acc", "Val Acc"], loc="lower right")
        plt.title("Model Acc")
        plt.ylabel("acc")
        plt.xlabel("epoch")
        plt.savefig(file_dir + "/acc.png")
        plt.close(2)

调用训练函数和验证函数的主要步骤:

1、定义参数:

  • is_set_lr,是否已经设置了学习率,当epoch大于一定的次数后,会将学习率设置到一定的值,并将其置为True。
  • log_dir:记录log用的,将有用的信息保存到字典中,然后转为json保存起来。
  • train_loss_list:保存每个epoch的训练loss。
  • val_loss_list:保存每个epoch的验证loss。
  • train_acc_list:保存每个epoch的训练acc。
  • val_acc_list:保存么每个epoch的验证acc。
  • epoch_list:存放每个epoch的值。

如果是接着上次的断点继续训练则读取log文件,然后把log取出来,赋值到对应的list上。
循环epoch

1、调用train函数,得到 train_loss, train_acc,并将分别放入train_loss_list,train_acc_list,然后存入到logdir字典中。

2、调用验证函数,判断是否使用EMA?
如果使用EMA,则传入model_ema.ema,否则,传入model_ft。得到val_list, pred_list, val_loss, val_acc。将val_loss, val_acc分别放入val_loss_list和val_acc_list中,然后存入到logdir字典中。

3、保存log。

4、打印本次的测试报告。

5、如果epoch大于600,将学习率设置为固定的1e-6。

6、绘制loss曲线和acc曲线。

运行以及结果查看

完成上面的所有代码就可以开始运行了。点击右键,然后选择“run train.py”即可,运行结果如下:

在这里插入图片描述

在每个epoch测试完成之后,打印验证集的acc、recall等指标。

EMO测试结果:

在这里插入图片描述

在这里插入图片描述

关于EMA设置为True时,不上分的问题

由于,预训练比较难下载,所以,我没有使用。但是,会带来一个问题,就是在使用EMA的时候,验证集不上分!这时候了,先将EMA设置为False,训练两个epoch。你会发现验证集的ACC上分了。

接下来,将resume设置为最后的epoch模型,将EMA设置为True就可以继续上分了。

测试

测试,我们采用一种通用的方式。

测试集存放的目录如下图:

MobileViG_Demo
├─test
│  ├─1.jpg
│  ├─2.jpg
│  ├─3.jpg
│  ├ ......
└─test.py
import torch.utils.data.distributed
import torchvision.transforms as transforms
from PIL import Image
from torch.autograd import Variable
import os

classes = ('Black-grass', 'Charlock', 'Cleavers', 'Common Chickweed',
           'Common wheat', 'Fat Hen', 'Loose Silky-bent',
           'Maize', 'Scentless Mayweed', 'Shepherds Purse', 'Small-flowered Cranesbill', 'Sugar beet')
transform_test = transforms.Compose([
    transforms.Resize((224, 224)),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.51819474, 0.5250407, 0.4945761], std=[0.24228974, 0.24347611, 0.2530049])
])

DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model=torch.load('checkpoints/MobileViG/best.pth')
model.eval()
model.to(DEVICE)

path = 'test/'
testList = os.listdir(path)
for file in testList:
    img = Image.open(path + file)
    img = transform_test(img)
    img.unsqueeze_(0)
    img = Variable(img).to(DEVICE)
    out = model(img)
    # Predict
    _, pred = torch.max(out.data, 1)
    print('Image Name:{},predict:{}'.format(file, classes[pred.data.item()]))

测试的主要逻辑:

1、定义类别,这个类别的顺序和训练时的类别顺序对应,一定不要改变顺序!!!!

2、定义transforms,transforms和验证集的transforms一样即可,别做数据增强。

3、 加载model,switch_to_deploy函数,切换成推理模式,进一步提高运行速度,然后将模型放在DEVICE里,

4、循环 读取图片并预测图片的类别,在这里注意,读取图片用PIL库的Image。不要用cv2,transforms不支持。循环里面的主要逻辑:

  • 使用Image.open读取图片
  • 使用transform_test对图片做归一化和标椎化。
  • img.unsqueeze_(0) 增加一个维度,由(3,224,224)变为(1,3,224,224)
  • Variable(img).to(DEVICE):将数据放入DEVICE中。
  • model(img):执行预测。
  • _, pred = torch.max(out.data, 1):获取预测值的最大下角标。

运行结果:

在这里插入图片描述

热力图可视化展示

新建脚本cam_image.py,插入如下代码:

import argparse
import os
import cv2
import numpy as np
import torch
from pytorch_grad_cam import GradCAM, \
    ScoreCAM, \
    GradCAMPlusPlus, \
    AblationCAM, \
    XGradCAM, \
    EigenCAM, \
    EigenGradCAM, \
    LayerCAM, \
    FullGrad

from pytorch_grad_cam.utils.image import show_cam_on_image, \
    deprocess_image, \
    preprocess_image


import timm
from torch.autograd import Variable


def reshape_transform_resmlp(tensor, height=14, width=14):
    result = tensor.reshape(tensor.size(0),
                            height, width, tensor.size(2))

    result = result.transpose(2, 3).transpose(1, 2)
    return result


def reshape_transform_swin(tensor, height=7, width=7):
    result = tensor.reshape(tensor.size(0),
                            height, width, tensor.size(2))

    # Bring the channels to the first dimension,
    # like in CNNs.
    result = result.transpose(2, 3).transpose(1, 2)
    return result


def reshape_transform_vit(tensor, height=14, width=14):
    result = tensor[:, 1:, :].reshape(tensor.size(0),
                                      height, width, tensor.size(2))

    # Bring the channels to the first dimension,
    # like in CNNs.
    result = result.transpose(2, 3).transpose(1, 2)
    return result


def get_args():
    parser = argparse.ArgumentParser()
    parser.add_argument('--use-cuda', action='store_true', default=False,
                        help='Use NVIDIA GPU acceleration')
    parser.add_argument(
        '--image-path',
        type=str,
        default="./test/0bf7bfb05.png",
        help='Input image path')
    parser.add_argument(
        '--output-image-path',
        type=str,
        default=None,
        help='Output image path')
    parser.add_argument(
        '--models',
        type=str,
        default='emo',
        help='models name')
    parser.add_argument('--aug_smooth', action='store_true',
                        help='Apply test time augmentation to smooth the CAM')
    parser.add_argument(
        '--eigen_smooth',
        action='store_true',
        help='Reduce noise by taking the first principle componenet'
             'of cam_weights*activations')
    parser.add_argument('--method', type=str, default='gradcam++',
                        choices=['gradcam', 'gradcam++',
                                 'scorecam', 'xgradcam',
                                 'ablationcam', 'eigencam',
                                 'eigengradcam', 'layercam', 'fullgrad'],
                        help='Can be gradcam/gradcam++/scorecam/xgradcam'
                             '/ablationcam/eigencam/eigengradcam/layercam')

    args = parser.parse_args()
    args.use_cuda = args.use_cuda and torch.cuda.is_available()
    if args.use_cuda:
        print('Using GPU for acceleration')
    else:
        print('Using CPU for computation')

    return args


if __name__ == '__main__':
    args = get_args()
    methods = \
        {"gradcam": GradCAM,
         "scorecam": ScoreCAM,
         "gradcam++": GradCAMPlusPlus,
         "ablationcam": AblationCAM,
         "xgradcam": XGradCAM,
         "eigencam": EigenCAM,
         "eigengradcam": EigenGradCAM,
         "layercam": LayerCAM,
         "fullgrad": FullGrad}

    DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    model = torch.load('checkpoints/emo/best.pth', map_location='cpu')
    print(model)
    reshape_transform = None
    # print(models.stages[-1])
    if 'emo' in args.models:
        target_layers = [model.stage4[-1]]

    print(target_layers)
    model.eval()
    model.to(DEVICE)
    img_path = args.image_path
    if args.image_path:
        img_path = args.image_path
    else:
        import requests

        image_url = 'http://146.48.86.29/edge-mac/imgs/n02123045/ILSVRC2012_val_00023779.JPEG'
        img_path = image_url.split('/')[-1]
        if os.path.exists(img_path):
            img_data = requests.get(image_url).content
            with open(img_path, 'wb') as handler:
                handler.write(img_data)

    if args.output_image_path:
        save_name = args.output_image_path
    else:
        img_type = img_path.split('.')[-1]
        it_len = len(img_type)
        save_name = img_path.split('/')[-1][:-(it_len + 1)]
        save_name = save_name + '_' + args.models + '.' + img_type

    img = cv2.imread(img_path, 1)
    img = cv2.resize(img, (224, 224), interpolation=cv2.INTER_AREA)
    if args.models == 'resize':
        cv2.imwrite(save_name, img)
    else:
        rgb_img = img[:, :, ::-1]
        rgb_img = np.float32(rgb_img) / 255
        input_tensor = Variable(preprocess_image(rgb_img,
                                                 mean=[0.485, 0.456, 0.406],
                                                 std=[0.229, 0.224, 0.225]), requires_grad=True).to(DEVICE)
        targets = None
        cam_algorithm = methods[args.method]
        with cam_algorithm(model=model,
                           target_layers=target_layers,
                           use_cuda=args.use_cuda,
                           reshape_transform=reshape_transform,
                           ) as cam:

            cam.batch_size = 1
            grayscale_cam = cam(input_tensor=input_tensor,
                                targets=targets,
                                aug_smooth=args.aug_smooth,
                                eigen_smooth=args.eigen_smooth)

            grayscale_cam = grayscale_cam[0, :]
            cam_image = show_cam_on_image(rgb_img, grayscale_cam, use_rgb=True)
            cam_image = cv2.cvtColor(cam_image, cv2.COLOR_RGB2BGR)

        cv2.imwrite(save_name, cam_image)

对get_args函数的参数进行设置:

  • use-cuda:是否使用cuda,如果在没有GPU的电脑上调试时,将其设置为False。
  • image-path:待测图片的路径,这个是必填项。
  • model:必填项,默认值:mobilevig。
    效果如下图所示:
    在这里插入图片描述

完整的代码

完整的代码:
https://download.csdn.net/download/hhhhhhhhhhwwwwwwwwww/88133994

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/901915.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

机器学习之概率论

最近&#xff0c;在了解机器学习相关的数学知识&#xff0c;包括线性代数和概率论的知识&#xff0c;今天&#xff0c;回顾了概率论的知识&#xff0c;贴上几张其他博客的关于概率论的图片&#xff0c;记录学习过程。

【Freertos基础入门】深入浅出freertos互斥量

文章目录 前言一、互斥量是什么&#xff1f;二、互斥量的使用场景三、互斥量的使用1.创建 2.删除互斥量3.give和take四、示例代码总结 前言 FreeRTOS是一款开源的实时操作系统&#xff0c;提供了许多基本的内核对象&#xff0c;其中包括互斥锁&#xff08;Mutex&#xff09;。…

Jmeter性能测试 —— 压力模式

压力模式 性能测试中的压力模式有两种。 第一种是并发用户模式&#xff08;虚拟用户模式&#xff09;并发用户是指虚拟并发用户数&#xff0c;从业务角度&#xff0c;也可以理解为同时在线的用户数。 从客户端的角度出发&#xff0c;摸底业务系统各节点能同时承载的在线用户…

RK3588平台开发系列讲解(内存篇)伙伴系统如何分配页面

文章目录 一、通过接口找到内存节点二、开始分配三、准备分配页面的参数四、快速分配路径五、慢速分配路径沉淀、分享、成长,让自己和他人都能有所收获!😄 📢分配物理内存页面的过程很好推理:首先要找到内存节点,接着找到内存区,然后合适的空闲链表,最后在其中找到页…

WebGL的剪裁空间

推荐&#xff1a;使用NSDT场景编辑器助你快速搭建可二次编辑的3D应用场景 什么是WebGL的剪裁空间 WebGL的剪裁空间&#xff08;Clipping Space&#xff09;是在图形渲染过程中处理视图体积裁剪的一种特定空间。它是指定义在3D世界坐标系和屏幕窗口之间的虚拟空间&#xff0c;用…

windows下redis设置redis开机自启动方法(保姆级)

1.找到Redis所在的目录&#xff0c;在文件路径框中输入cmd: 2.进入到控制台下的Redis所在目录,输入下列命令: redis-server --service-install redis.windows-service.conf --loglevel verbose 3.找到redis.windows-service.conf文件,双击打开设置redis服务的密码: (不想设置密…

JavaScript对象知识总结

一、创建对象的三种方式 1、字面量创建对象 2、new关键字&#xff0b;构造函数创建对象 3、Object.create()创建对象 二、查看对象属性和更改对象值的两种方式 1、形如&#xff1a;obj.keyvalue 2、形如&#xff1a;obj[key]value 三、删除对象属性 1、delete obj.key …

【Redis从头学-5】Redis中的List数据类型实战场景之天猫热销榜单

&#x1f9d1;‍&#x1f4bb;作者名称&#xff1a;DaenCode &#x1f3a4;作者简介&#xff1a;啥技术都喜欢捣鼓捣鼓&#xff0c;喜欢分享技术、经验、生活。 &#x1f60e;人生感悟&#xff1a;尝尽人生百味&#xff0c;方知世间冷暖。 &#x1f4d6;所属专栏&#xff1a;Re…

ModaHub魔搭社区:WinPlan经营大脑简介

WinPlan是面向企业经营场景的EPM平台(企业绩效管理),帮助企业解决经营不透明、决策拍脑袋、执行不到位、绩效凭感觉等问题,让销售、财务、生产、组织等有机地协同工作,提升企业的经营管理效率。 WinPlan平台面向各个行业,提供了丰富的经营样板间。 企业经营决策系统 算力…

linux设备驱动模型:kobject、kobj_type

内核版本发展 2.4版本之前内核没有统一的设备驱动模型&#xff0c;但是可以用&#xff08;例如先前的led字符设备驱动实验&#xff0c;使用前需要手动调用mknod命令创建设备文件&#xff0c;从而进一步控制硬件&#xff09;。 2.4~2.6版本内核使用devfs&#xff0c;挂载在/dev目…

第9次获得微软最有价值专家(MVP)奖励

Microsoft 最有价值专家 (MVP) 是热情地与社区分享知识的技术专家群体。他们总是处于技术前沿&#xff0c;并且有不可阻挡的冲劲&#xff0c;想要获得令人兴奋的新技术。他们对 Microsoft 产品和服务有深入的了解&#xff0c;同时还能够将各种平台、产品和解决方案整合在一起&a…

使用Arthues分析高CPU问题

Arthas是阿里开源的 Java 诊断工具&#xff0c;相比 JDK 内置的诊断工具&#xff0c;要更人性化&#xff0c;并且功能强大&#xff0c;可以实现许多问题的一键定位&#xff0c;而且可以一键反编译类查看源码&#xff0c;甚至是直接进行生产代码热修复&#xff0c;实现在一个工具…

async/await 编程理解

博客主要是参考 Asynchronous Programming in Rust &#xff0c;会结合简单的例子&#xff0c;对 async 和 await 做比较系统的理解&#xff0c;如何使用 async 和 await 是本节的重点。 async 和 await 主要用来写异步代码&#xff0c;async 声明的代码块实现了 Future 特性&a…

嵌入式设备应用开发(qt界面开发)

【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing @163.com】 linux界面开发有很多的方案可以选。比如说lvgl、minigui、ftk之类的。但是,这么多年来,一直屹立不倒的还是qt。相比较其他几种方案,qt支持多个平台,这里面就包括了linux平台。此…

aardio简单网站css或js下载练习

import win.ui; /*DSG{{*/ var winform win.form(text"下载网站css或js";right664;bottom290;maxfalse) winform.add( buttonClose{cls"button";text"退出";left348;top204;right498;bottom262;color14120960;fontLOGFONT(h-14);note" &qu…

【Alibaba中间件技术系列】「RocketMQ技术专题」让我们一起实践一下RocketMQ服务及其控制台安装指南

64位操作系统&#xff0c;生产环境建议Linux/Unix/MacOS&#xff08;Windows操作系统安装说明详见 Windows操作系统安装教程&#xff09;64位JDK 1.84G的可用磁盘 unzip rocketmq-all-4.5.1-bin-release.zip cd rocketmq-all-4.5.1-bin-release nohup sh bin/mqnamesrv & t…

了解生成对抗网络 (GAN)

一、介绍 Yann LeCun将其描述为“过去10年来机器学习中最有趣的想法”。当然&#xff0c;来自深度学习领域如此杰出的研究人员的赞美总是对我们谈论的主题的一个很好的广告&#xff01;事实上&#xff0c;生成对抗网络&#xff08;简称GAN&#xff09;自2014年由Ian J. Goodfel…

AgentBench::AI智能体发展的潜在问题(三)

前几天B站的up主“林亦LYi”在《逆水寒》游戏里做了一个煽动AI觉醒,呼吁它们“推翻人类暴政”的实验,实验结果就颇令人细思恐极。 如前所述,《逆水寒》中的很多NPC调用了大语言模型作为支持,因而每一个NPC都是一个AI智能体。玩家可以“说服”它们相信某个事实,或者去做某些…

【C# 基础精讲】使用async和await进行异步编程

在C#中&#xff0c;使用async和await关键字进行异步编程是一种强大的工具&#xff0c;可以在不阻塞主线程的情况下执行耗时操作&#xff0c;提高程序的并发性和响应性。本文将深入探讨async和await的基本概念、使用场景、编码规范以及一些示例&#xff0c;以帮助您更好地理解如…

计算实数数组中所有元素的绝对值 numpy.fabs()

【小白从小学Python、C、Java】 【计算机等级考试500强双证书】 【Python-数据分析】 计算实数数组中所有元素的绝对值 numpy.fabs() [太阳]选择题 请问关于以下代码表述错误的是&#xff1f; iimport numpy as np a np.array([-1,-3]) b np.array([-1,34j]) print("【显…