以 CIFAR10 数据集为例,分类问题(10分类)
model.py
import torch
from torch import nn
# 搭建神经网络
class MyNN(nn.Module):
def __init__(self):
super(MyNN, self).__init__()
self.model = nn.Sequential(
nn.Conv2d(3, 32, 5, 1, 2),
nn.MaxPool2d(2),
nn.Conv2d(32, 32, 5, 1, 2),
nn.MaxPool2d(2),
nn.Conv2d(32, 64, 5, 1, 2),
nn.MaxPool2d(2),
nn.Flatten(),
nn.Linear(64 * 4 * 4, 64),
nn.Linear(64, 10)
)
def forward(self, x):
x = self.model(x)
return x
if __name__ == '__main__':
# 验证网络的正确性
mynn = MyNN()
input = torch.ones(64,3,32,32)
output = mynn(input)
print(output)
运行结果:torch.Size([64,10])
返回64行数据,每一行数据有10个数据,代表每一张图片在10个类别中的概率
train.py
import torchvision
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
# model.py必须和train.py在同一个文件夹下
from model import *
# 准备数据集(CIFAR10 数据集是PIL Image,要转换为tensor数据类型)
train_data = torchvision.datasets.CIFAR10(root="../datasets",train=True,transform=torchvision.transforms.ToTensor(),download=False)
test_data = torchvision.datasets.CIFAR10(root="../datasets",train=False,transform=torchvision.transforms.ToTensor(),download=False)
# 获得数据集的长度
train_data_size = len(train_data)
test_data_size = len(test_data)
print("训练数据集的长度为:{}".format(train_data_size))
print("测试数据集的长度为:{}".format(test_data_size))
# 利用dataloader来加载数据集
train_dataloader = DataLoader(train_data,batch_size=64)
test_dataloader = DataLoader(test_data,batch_size=64)
# 创建网络模型
mynn = MyNN()
# 损失函数
loss_function = nn.CrossEntropyLoss()
# 优化器
learning_rate = 1e-2
optimizer = torch.optim.SGD(mynn.parameters(), lr=learning_rate) # SGD 随机梯度下降
# 设置训练网络的一些参数
total_train_step = 0 # 记录训练次数
total_test_step = 0 # 记录测试次数
epoch = 10 # 训练的轮数
# 添加tensorboard
writer = SummaryWriter("../logs_train")
for i in range(epoch):
print("----------第{}轮训练开始----------".format(i+1))
# 训练步骤开始
mynn.train()
for data in train_dataloader:
imgs,targets = data
outputs = mynn(imgs)
loss = loss_function(outputs, targets)
# 优化器优化模型
optimizer.zero_grad() # 首先要梯度清零
loss.backward() # 反向传播得到每一个参数节点的梯度
optimizer.step() # 对参数进行优化
total_train_step += 1
# 训练步骤逢百才打印记录
if total_train_step % 100 == 0:
print("训练次数:{},loss:{}".format(total_train_step, loss.item()))
writer.add_scalar("train_loss",loss.item(),total_train_step)
# 测试步骤开始
mynn.eval()
total_test_loss = 0
total_accuracy = 0
# 无梯度,不进行调优
with torch.no_grad():
for data in test_dataloader:
imgs,targets = data
outputs = mynn(imgs)
loss = loss_function(outputs, targets)
total_test_loss += loss
# 即便得到整体测试集上的 loss,也不能很好说明在测试集上的表现效果
# 在分类问题中可以用正确率表示
accuracy = (outputs.argmax(1) == targets).sum()
total_accuracy += accuracy
print("整体测试集上的loss:{}".format(total_test_loss))
print("整体测试集上的正确率:{}".format(total_accuracy/test_data_size))
writer.add_scalar("test_loss",total_test_loss,total_test_step)
writer.add_scalar("test_accuracy",total_accuracy/test_data_size,total_test_step)
total_test_step += 1
# 保存每一轮训练的模型
torch.save(mynn,"mynn_{}.pth".format(i))
# torch.save(mynn.state_dict(),"mynn_{}.pth".format(i))
print("模型已保存")
writer.close()
关于正确率的计算:
方式1:
import torch outputs = torch.tensor([[0.1,0.2], [0.3,0.4]]) target = torch.tensor([0,1]) predict = outputs.argmax(1) print(predict) print(predict == target) print((predict == target).sum())
方式2:
import torch outputs = torch.tensor([[0.1,0.2], [0.3,0.4]]) target = torch.tensor([0,1]) predict = torch.max(outputs, dim=1)[1] print(predict) print(torch.eq(predict,target)) print(torch.eq(predict,target).sum()) print(torch.eq(predict,target).sum().item())
关于mynn.train()和mynn.eval():
这两句不写网络依然可以运行,它们的作用是:
这个案例没有 Dropout 层或 BatchNorm 层,所以有没有这两行都无所谓。但如果有这些特殊层,一定要调用。