基于医疗领域数据微调LLaMA——ChatDoctor模型

news2025/1/14 0:45:31

文章目录

  • ChatDoctor简介
  • 微调实战
    • 下载仓库并进入目录
    • 创建conda环境并配置环境(安装相关依赖)
    • 下载模型文件
    • 微调数据
    • 微调过程
      • 全量微调
      • 基于LoRA的微调
      • 基于微调后的模型推理

ChatDoctor简介

CHatDoctor论文:
ChatDoctor: A Medical Chat Model Fine-tuned on LLaMA Model using Medical Domain Knowledge
项目地址:https://github.com/Kent0n-Li/ChatDoctor

ChatDoctor是一款使用LLaMA模型并结合医学知识进行训练的医疗助手,研究人员先收集了50多万条真实医患对话,然后使用这些数据对LLaMA模型进行微调。

ChatDoctor不仅具备流畅的对话能力,在医疗领域的理解和诊断也达到了很高的水平。

用户只需描述症状,ChatDoctor就会像真人医生一样询问其他症状与体征,然后给出初步诊断和治疗建议,而且完全开源免费!

当然,ChatDoctor只是一个AI助手,不能完全替代人医生,但在常见病症诊断方面,它已经表现已经非常不错了。
在这里插入图片描述

微调实战

下载仓库并进入目录

git clone https://github.com/Kent0n-Li/ChatDoctor.git
cd ChatDoctor

创建conda环境并配置环境(安装相关依赖)

conda create -n chatdoctor python=3.10
pip install -r requirements.txt 
pip install datasets

因为我们要基于lora进行微调,故需要安装peft框架,安装方式参考:
https://github.com/AGI-Edgerunners/LLM-Adapters/tree/main
将该仓库中的peft目录复制到本仓库中,然后通过下面命令进行安装。

cd peft/
pip install -e .

下载模型文件

推荐使用git命令下载模型文件,但注意需要提前下载git-lfs工具包,安装步骤如下:

# 先安装git(如已安装可忽略)
sudo apt-get install git
# 安装apt-get源
curl -s https://packagecloud.io/install/repositories/github/git-lfs/script.deb.sh | sudo bash
# 安装git-lfs
sudo apt-get install git-lfs
# 初始化git-lfs
git lfs install

模型文件下载地址:https://huggingface.co/decapoda-research/llama-7b-hf

下载命令:

git clone https://huggingface.co/decapoda-research/llama-7b-hf

微调数据

ChatDoctor数据集
来自HealthCareMagic.com的10万例实际患者与医生之间的对话HealthCareMagic-100k

来自icliniq.com的1万例实际患者与医生之间的对话icliniq-10k。

5k例由ChatGPT生成的患者与医生之间的对话GenMedGPT-5k和疾病数据库

微调过程

项目中提供了两种微调方式:一种是全量微调,一种是基于lora的微调

全量微调

如果是多卡进行微调可以直接使用项目中提供的命令

torchrun --nproc_per_node=4 --master_port=<your_random_port> train.py \
   --model_name_or_path <your_path_to_hf_converted_llama_ckpt_and_tokenizer> \
   --data_path ./HealthCareMagic-100k.json \
   --bf16 True \
   --output_dir pretrained \
   --num_train_epochs 1 \
   --per_device_train_batch_size 4 \
   --per_device_eval_batch_size 4 \
   --gradient_accumulation_steps 8 \
   --evaluation_strategy "no" \
   --save_strategy "steps" \
   --save_steps 2000 \
   --save_total_limit 1 \
   --learning_rate 2e-6 \
   --weight_decay 0. \
   --warmup_ratio 0.03 \
   --lr_scheduler_type "cosine" \
   --logging_steps 1 \
   --fsdp "full_shard auto_wrap" \
   --fsdp_transformer_layer_cls_to_wrap 'LLaMADecoderLayer' \
   --tf32 True

基于LoRA的微调

python train_lora.py \
  --base_model '/data/sim_chatgpt/llama-7b-hf/models--decapoda-research--llama-7b-hf/snapshots/5f98eefcc80e437ef68d457ad7bf167c2c6a1348/' \
  --data_path 'chatdoctor5k.json' \
  --output_dir './lora_models/' \
  --batch_size 1 \
  --micro_batch_size 1 \
  --num_epochs 1 \
  --learning_rate 3e-5 \
  --cutoff_len 256 \
  --val_set_size 120 \
  --adapter_name lora

在这里插入图片描述
显存占用情况:约占用11G。
在这里插入图片描述

基于微调后的模型推理

使用全量微调好的模型进行推理:mncai/chatdoctor
transformers-cli download mncai/chatdoctor --cache-dir ./chatdoctor

修改chat.py

load_model("/data/chatdoctor/models--mncai--chatdoctor/snapshots/8fdcfdda6877d7f21173dfac48b2c14499ba8264/")

执行 python chat.py即可
报错:

ImportError: LlamaConverter requires the protobuf library but it was
not found in your environment.

解决方法:

pip install protobuf==3.19.0

执行 python chat.py
在这里插入图片描述
显存占用,约为14G
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/897065.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

JavaScript:交集和差集的应用场景

在集合A和集合B中&#xff0c;属于集合A&#xff0c;同时也属于集合B的元素组成的集合&#xff0c;就是交集。 在A中所有不属于集合B元素&#xff0c;组合成集合&#xff0c;就是差集。 那么在平时的开发中&#xff0c;如何使用差集和交集来解决问题呢&#xff1f; 现在有这…

Fixed Price Incentive Fee (FPIF)

总价加激励费用 (FPIF)。这种总价合同为买方和卖方提供了一定的灵活性&#xff0c;允许一定的绩 效偏离&#xff0c;并对实现既定目标给予相关的财务奖励&#xff08;通常取决于卖方的成本、进度或技术 绩效&#xff09;。FPIF 合同中会设置价格上限&#xff0c;高于此价格上限…

剑指 Offer 61. 扑克牌中的顺子(C++实现)

剑指 Offer 61. 扑克牌中的顺子https://leetcode.cn/problems/bu-ke-pai-zhong-de-shun-zi-lcof/ 优雅写法 bool isStraight(vector<int>& nums) {int maxVal INT_MIN, minVal INT_MAX;unordered_set<int> s;for (const int num : nums){if (num 0) // 跳过…

基于STM32+FreeRTOS的四轴机械臂

目录 项目概述&#xff1a; 一 准备阶段&#xff08;都是些废话&#xff09; 二 裸机测试功能 1.摇杆控制 接线&#xff1a; CubeMX配置&#xff1a; 代码&#xff1a; 2.蓝牙控制 接线&#xff1a; CubeMX配置 代码&#xff1a; 3.示教器控制 4.记录动作信息 5.执…

Matlab 频谱图中如何设置频率刻度

Matlab 频谱图中如何设置频率刻度&#xff08;横坐标&#xff09; 1、概述 时域信号经FFT 变换后得到了频谱&#xff0c;在作图时还必须设置正确的频率刻度&#xff0c;这样才能从图中得到正确的结果。下面来介绍如何设置正确的频率刻度。 2、案例分析 有一个余弦信号&#…

浏览器渲染原理 - 输入url 回车后发生了什么

目录 渲染时间点渲染流水线1&#xff0c;解析&#xff08;parse&#xff09;HTML1.1&#xff0c;DOM树1.2&#xff0c;CSSOM树1.3&#xff0c;解析时遇到 css 是怎么做的1.4&#xff0c;解析时遇到 js 是怎么做的 2&#xff0c;样式计算 Recalculate style3&#xff0c;布局 la…

Android Studio实现解析HTML获取json,解析json图片URL,将URL存到list,进行瀑布流展示

目录 效果build.gradle&#xff08;app&#xff09;添加的依赖&#xff08;用不上的可以不加&#xff09;AndroidManifest.xml错误activity_main.xmlitem_image.xmlMainActivityImage适配器ImageModel 接收图片URL 效果 build.gradle&#xff08;app&#xff09;添加的依赖&…

STM32 printf函数

printf函数输出流程 用户调用printf()函数到C标准库调用printf函数相关部分&#xff0c;printf函数由编译器提供的stdio.h解析。包含在usart.h文件中。fputc()最终实现输出。用户需要根据最终输出的硬件重新定义该函数&#xff0c;此过程为&#xff1a;printf重定向。 printf的…

用它来画文档插图简直太方便了

支持常用的12864接口&#xff0c;图像可保存&#xff0c;鼠标左键可delete键删除选区&#xff0c;鼠标右键抓取坐标。 支持快捷撤销操作CtrlZ、回退操作CtrlY&#xff0c;可点击此处下载软件。

Educational Codeforces Round 153 (Rated for Div. 2)ABC

Educational Codeforces Round 153 (Rated for Div. 2) 目录 A. Not a Substring题目大意思路核心代码 B. Fancy Coins题目大意思想核心代码 C. Game on Permutation题目大意思想核心代码 A. Not a Substring 题目大意 给定一个只包含“&#xff08;”和“&#xff09;”这两…

EV PV AC SPI CPI TCPI

SPI EV / PV CPI EV / ACCPI 1.25 SPI 0.8 PV 10 000 BAC 100 000EV PV * SPI 10 000 * 0.8 8000 AC EV / CPI 8000 / 1.25 6400TCPI (BAC - EV) / (BAC -AC) (100 000 - 8 000) / (100 000 - 6 400) 92 000 / 93 600 0.98290598

Python土力学与基础工程计算.PDF-钻探泥浆制备

Python 求解代码如下&#xff1a; 1. rho1 2.5 # 黏土密度&#xff0c;单位&#xff1a;t/m 2. rho2 1.0 # 泥浆密度&#xff0c;单位&#xff1a;t/m 3. rho3 1.0 # 水的密度&#xff0c;单位&#xff1a;t/m 4. V 1.0 # 泥浆容积&#xff0c;单位&#xff1a;…

画质提升+带宽优化,小红书音视频团队端云结合超分落地实践

随着视频业务和短视频播放规模不断增长&#xff0c;小红书一直致力于研究&#xff1a;如何在保证提升用户体验质量的同时降低视频带宽成本&#xff1f; 在近日结束的音视频技术大会「LiveVideoStackCon 2023」上海站中&#xff0c;小红书音视频架构视频图像处理算法负责人剑寒向…

OpenAI 选择这家成立2年的8人团队做什么?

当地时间 8 月 16 日&#xff0c;OpenAI 发布公告称收购了 Global Illumination 的团队&#xff0c;此笔交易更成为 OpenAI 自 2015 年成立以来首次对外收购&#xff0c;但并未公开交易涉及金额。据悉&#xff0c;该团队将参与 OpenAI 核心产品产品的研发&#xff0c;包括 Chat…

第八章:联邦学习在金融保险领域的应用案例

8.1 概述 联邦学习作为一种保障数据安全的建模方法&#xff0c;在保险、金融等行业中的应用前景十分广泛&#xff0c;因为这类行业昔谝受到更为严格的监管和隐私保护法律法规的约束&#xff0c;跨部门或者跨枧构之间的数据&#xff0c;无法被直接共卓进行机器学习模型训练。因…

Go download

https://go.dev/dl/https://golang.google.cn/dl/

贝锐蒲公英助力电子公交站牌联网远程运维,打造智慧出行新趋势

在现代城市公共交通系统中&#xff0c;我们随处可见电子公交站牌的身影。作为公共交通服务的核心之一&#xff0c;电子公交站牌的稳定运行至关重要&#xff0c;公交站台的实时公交状况、公共广告信息&#xff0c;是市民候车时关注的焦点。 某交通科技公司在承接某市智能电子站牌…

Fluent-MyBatis

Fluent-MyBatis Fluent-MyBatis 简介 何为 Fluent Mybatis&#xff1f; Fluent Mybatis, 是一款 Mybatis 语法增强框架, 综合了 Mybatis Plus, Dynamic SQL, JPA 等框架特性和优点 Fluent-MyBatis 开源地址 Fluent-MyBatis 原理 Fluent-MyBatis 原理是利用 annotation pro…

商城-学习整理-高级-商城业务-商品上架es(十)

目录 一、商品上架1、sku在ES中存储模型分析2、nested数据类型场景3、构造基本数据&#xff08;商品上架&#xff09; 二、首页1、项目介绍2、整合thymeleaf&#xff08;spring-boot下模板引擎&#xff09;渲染页面3、页面修改不重启服务器实时更新4、渲染二级三级数据 三、搭建…

HCIP---路由策略

文章目录 前言一、pandas是什么&#xff1f;二、使用步骤 1.引入库2.读入数据总结 前言 前文我们初步了解了重发布技术的技术的工作流程及配置方法&#xff0c;在解决路由回馈问题的同时&#xff0c;路由回馈&#xff0c;选路不佳问题仍然没有得到有效解决&#xff0c;接下来通…